{"title":"Reed-Solomon码广义最小距离译码的欧几里得算法","authors":"Sabine Kampf, M. Bossert","doi":"10.1109/CIG.2010.5592677","DOIUrl":null,"url":null,"abstract":"This paper presents a method to merge Generalized Minimum Distance decoding of Reed-Solomon codes with the extended Euclidean algorithm. By merge, we mean that the steps performed in Generalized Minimum Distance decoding are similar to those of the extended Euclidean algorithm. The resulting algorithm has a complexity of O(n2).","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Euclidean algorithm for Generalized Minimum Distance decoding of Reed-Solomon codes\",\"authors\":\"Sabine Kampf, M. Bossert\",\"doi\":\"10.1109/CIG.2010.5592677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to merge Generalized Minimum Distance decoding of Reed-Solomon codes with the extended Euclidean algorithm. By merge, we mean that the steps performed in Generalized Minimum Distance decoding are similar to those of the extended Euclidean algorithm. The resulting algorithm has a complexity of O(n2).\",\"PeriodicalId\":354925,\"journal\":{\"name\":\"2010 IEEE Information Theory Workshop\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Information Theory Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2010.5592677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Euclidean algorithm for Generalized Minimum Distance decoding of Reed-Solomon codes
This paper presents a method to merge Generalized Minimum Distance decoding of Reed-Solomon codes with the extended Euclidean algorithm. By merge, we mean that the steps performed in Generalized Minimum Distance decoding are similar to those of the extended Euclidean algorithm. The resulting algorithm has a complexity of O(n2).