{"title":"卫星任务:PhoENiX (X(=磁重联)区域高能和非热等离子体物理学)","authors":"N. Narukage","doi":"10.1117/12.2561341","DOIUrl":null,"url":null,"abstract":"We are planning a new solar satellite mission, \"PhoENiX\", for understanding of particle acceleration during magnetic reconnection. The main observation targets of this mission are solar flares. The scientific objectives of this mission are (1) to identify particle acceleration sites, (2) to investigate temporal evolution of particle acceleration, and (3) to characterize properties of accelerated particles, during solar flares. In order to achieve these science objectives, the PhoENiX satellite is planned to be equipped with three instruments of (1) Photon-counting type focusing-imaging spectrometer in soft X-rays (up to ~10 keV), (2) Photoncounting type focusing-imaging spectrometer in hard X-rays (up to ~30 keV), and (3) Spectropolarimeter in soft gamma-rays (spectroscopy is available in the energy range of from > 20 keV to 60 keV to < 600 keV). We plan to realize PhoENiX satellite mission around next solar maximum (around 2025).","PeriodicalId":170593,"journal":{"name":"Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Satellite mission: PhoENiX (Physics of Energetic and Non-thermal plasmas in the X (= magnetic reconnection) region)\",\"authors\":\"N. Narukage\",\"doi\":\"10.1117/12.2561341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are planning a new solar satellite mission, \\\"PhoENiX\\\", for understanding of particle acceleration during magnetic reconnection. The main observation targets of this mission are solar flares. The scientific objectives of this mission are (1) to identify particle acceleration sites, (2) to investigate temporal evolution of particle acceleration, and (3) to characterize properties of accelerated particles, during solar flares. In order to achieve these science objectives, the PhoENiX satellite is planned to be equipped with three instruments of (1) Photon-counting type focusing-imaging spectrometer in soft X-rays (up to ~10 keV), (2) Photoncounting type focusing-imaging spectrometer in hard X-rays (up to ~30 keV), and (3) Spectropolarimeter in soft gamma-rays (spectroscopy is available in the energy range of from > 20 keV to 60 keV to < 600 keV). We plan to realize PhoENiX satellite mission around next solar maximum (around 2025).\",\"PeriodicalId\":170593,\"journal\":{\"name\":\"Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2561341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2561341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Satellite mission: PhoENiX (Physics of Energetic and Non-thermal plasmas in the X (= magnetic reconnection) region)
We are planning a new solar satellite mission, "PhoENiX", for understanding of particle acceleration during magnetic reconnection. The main observation targets of this mission are solar flares. The scientific objectives of this mission are (1) to identify particle acceleration sites, (2) to investigate temporal evolution of particle acceleration, and (3) to characterize properties of accelerated particles, during solar flares. In order to achieve these science objectives, the PhoENiX satellite is planned to be equipped with three instruments of (1) Photon-counting type focusing-imaging spectrometer in soft X-rays (up to ~10 keV), (2) Photoncounting type focusing-imaging spectrometer in hard X-rays (up to ~30 keV), and (3) Spectropolarimeter in soft gamma-rays (spectroscopy is available in the energy range of from > 20 keV to 60 keV to < 600 keV). We plan to realize PhoENiX satellite mission around next solar maximum (around 2025).