用小波变换跟踪非平稳

H. Krim, J. Pesquet, K. Drouiche
{"title":"用小波变换跟踪非平稳","authors":"H. Krim, J. Pesquet, K. Drouiche","doi":"10.1109/ICASSP.1993.319101","DOIUrl":null,"url":null,"abstract":"Nonstationary signal parameter estimation/detection is challenging on account of the underlying stationarity assumption in most of the classical techniques. The authors present a framework for a class of nonstationary processes via a multiscale analysis. This framework gives insight into the problem, and new results are obtained on multiscale autoregressive integrated moving average (ARIMA) processes. The possibility of inducing stationarity at different resolution levels of nonstationary processes by an appropriate wavelet transform is shown. This permits use of classical estimation/detection techniques. The approach is extended to wavelet package decompositions.<<ETX>>","PeriodicalId":428449,"journal":{"name":"1993 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tracking nonstationarities with a wavelet transform\",\"authors\":\"H. Krim, J. Pesquet, K. Drouiche\",\"doi\":\"10.1109/ICASSP.1993.319101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonstationary signal parameter estimation/detection is challenging on account of the underlying stationarity assumption in most of the classical techniques. The authors present a framework for a class of nonstationary processes via a multiscale analysis. This framework gives insight into the problem, and new results are obtained on multiscale autoregressive integrated moving average (ARIMA) processes. The possibility of inducing stationarity at different resolution levels of nonstationary processes by an appropriate wavelet transform is shown. This permits use of classical estimation/detection techniques. The approach is extended to wavelet package decompositions.<<ETX>>\",\"PeriodicalId\":428449,\"journal\":{\"name\":\"1993 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1993.319101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1993.319101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

非平稳信号参数的估计/检测在大多数经典技术中都存在潜在的平稳假设。作者通过多尺度分析提出了一类非平稳过程的框架。该框架对该问题进行了深入的研究,并在多尺度自回归积分移动平均(ARIMA)过程中获得了新的结果。给出了用适当的小波变换在不同分辨率下诱导非平稳过程平稳性的可能性。这允许使用经典的估计/检测技术。将该方法推广到小波包分解中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking nonstationarities with a wavelet transform
Nonstationary signal parameter estimation/detection is challenging on account of the underlying stationarity assumption in most of the classical techniques. The authors present a framework for a class of nonstationary processes via a multiscale analysis. This framework gives insight into the problem, and new results are obtained on multiscale autoregressive integrated moving average (ARIMA) processes. The possibility of inducing stationarity at different resolution levels of nonstationary processes by an appropriate wavelet transform is shown. This permits use of classical estimation/detection techniques. The approach is extended to wavelet package decompositions.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信