切比雪夫最优非均匀插值的快速计算

Zhongde Wang, G. Jullien, W. Miller
{"title":"切比雪夫最优非均匀插值的快速计算","authors":"Zhongde Wang, G. Jullien, W. Miller","doi":"10.1109/MWSCAS.1995.504391","DOIUrl":null,"url":null,"abstract":"There are two schemes of Chebyshev interpolation. Neagoe (1990) recently developed an approach, using the existing DCT algorithms, for computing the Chebyshev coefficients for one of the two schemes, but no algorithms have been developed for computing the interpolated samples. In this paper we first demonstrate that both schemes of Chebyshev interpolation relate to the type I and II discrete cosine transforms (DCT-I and DCT-II), respectively. Then we show that both schemes of Chebyshev interpolation can be computed using the existing fast algorithms for the DCT.","PeriodicalId":165081,"journal":{"name":"38th Midwest Symposium on Circuits and Systems. Proceedings","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fast computation of Chebyshev optimal nonuniform interpolation\",\"authors\":\"Zhongde Wang, G. Jullien, W. Miller\",\"doi\":\"10.1109/MWSCAS.1995.504391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are two schemes of Chebyshev interpolation. Neagoe (1990) recently developed an approach, using the existing DCT algorithms, for computing the Chebyshev coefficients for one of the two schemes, but no algorithms have been developed for computing the interpolated samples. In this paper we first demonstrate that both schemes of Chebyshev interpolation relate to the type I and II discrete cosine transforms (DCT-I and DCT-II), respectively. Then we show that both schemes of Chebyshev interpolation can be computed using the existing fast algorithms for the DCT.\",\"PeriodicalId\":165081,\"journal\":{\"name\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.1995.504391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th Midwest Symposium on Circuits and Systems. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1995.504391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

切比雪夫插值有两种格式。Neagoe(1990)最近开发了一种方法,使用现有的DCT算法来计算两种方案之一的切比雪夫系数,但没有开发用于计算插值样本的算法。在本文中,我们首先证明了Chebyshev插值的两种格式分别与I型和II型离散余弦变换(DCT-I和DCT-II)有关。然后,我们证明了这两种切比雪夫插值格式都可以使用现有的快速DCT算法进行计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast computation of Chebyshev optimal nonuniform interpolation
There are two schemes of Chebyshev interpolation. Neagoe (1990) recently developed an approach, using the existing DCT algorithms, for computing the Chebyshev coefficients for one of the two schemes, but no algorithms have been developed for computing the interpolated samples. In this paper we first demonstrate that both schemes of Chebyshev interpolation relate to the type I and II discrete cosine transforms (DCT-I and DCT-II), respectively. Then we show that both schemes of Chebyshev interpolation can be computed using the existing fast algorithms for the DCT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信