PATRICIA Tries的预期外部形象

A. Magner, C. Knessl, W. Szpankowski
{"title":"PATRICIA Tries的预期外部形象","authors":"A. Magner, C. Knessl, W. Szpankowski","doi":"10.1137/1.9781611973204.2","DOIUrl":null,"url":null,"abstract":"We consider PATRICIA tries on n random binary strings generated by a memoryless source with parameter p ≥ 1/2. For both the symmetric (p = 1/2) and asymmetric cases, we analyze asymptotics of the expected value of the external profile at level k = k(n), defined to be the number of leaves at level k. We study three natural ranges of k with respect to n. For k bounded, the mean profile decays exponentially with respect to n. For k growing logarithmically with n, the parameter exhibits polynomial growth in n, with some periodic fluctuations. Finally, for k = Θ(n), we see super-exponential decay, again with periodic fluctuations. Our derivations rely on analytic techniques, including Mellin transforms, analytic depoissonization, and the saddle point method. To cover wider ranges of k and n and provide more intuitive insights, we also use methods of applied mathematics, including asymptotic matching and linearization.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Expected External Profile of PATRICIA Tries\",\"authors\":\"A. Magner, C. Knessl, W. Szpankowski\",\"doi\":\"10.1137/1.9781611973204.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider PATRICIA tries on n random binary strings generated by a memoryless source with parameter p ≥ 1/2. For both the symmetric (p = 1/2) and asymmetric cases, we analyze asymptotics of the expected value of the external profile at level k = k(n), defined to be the number of leaves at level k. We study three natural ranges of k with respect to n. For k bounded, the mean profile decays exponentially with respect to n. For k growing logarithmically with n, the parameter exhibits polynomial growth in n, with some periodic fluctuations. Finally, for k = Θ(n), we see super-exponential decay, again with periodic fluctuations. Our derivations rely on analytic techniques, including Mellin transforms, analytic depoissonization, and the saddle point method. To cover wider ranges of k and n and provide more intuitive insights, we also use methods of applied mathematics, including asymptotic matching and linearization.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611973204.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973204.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们考虑在参数p≥1/2的无记忆源生成的n个随机二进制字符串上进行PATRICIA尝试。对于对称(p = 1/2)和非对称情况,我们分析了k = k(n)层外部轮廓期望值的渐近性,定义为k层叶子的数量。我们研究了k相对于n的三个自然范围。对于k有界,平均轮廓相对于n呈指数衰减。对于k随n呈对数增长,参数在n中呈现多项式增长,并具有一些周期性波动。最后,对于k = Θ(n),我们看到了超级指数衰减,同样伴随着周期性波动。我们的推导依赖于解析技术,包括梅林变换、解析解泊松化和鞍点法。为了涵盖更广泛的k和n范围并提供更直观的见解,我们还使用了应用数学方法,包括渐近匹配和线性化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expected External Profile of PATRICIA Tries
We consider PATRICIA tries on n random binary strings generated by a memoryless source with parameter p ≥ 1/2. For both the symmetric (p = 1/2) and asymmetric cases, we analyze asymptotics of the expected value of the external profile at level k = k(n), defined to be the number of leaves at level k. We study three natural ranges of k with respect to n. For k bounded, the mean profile decays exponentially with respect to n. For k growing logarithmically with n, the parameter exhibits polynomial growth in n, with some periodic fluctuations. Finally, for k = Θ(n), we see super-exponential decay, again with periodic fluctuations. Our derivations rely on analytic techniques, including Mellin transforms, analytic depoissonization, and the saddle point method. To cover wider ranges of k and n and provide more intuitive insights, we also use methods of applied mathematics, including asymptotic matching and linearization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信