利用深度学习技术去除可见水印

Chia-Chen Lin, Pei-Yu Wang, Yan-Heng Lin, Hsuan-Chao Huang, Morteza Saberikamposhti
{"title":"利用深度学习技术去除可见水印","authors":"Chia-Chen Lin, Pei-Yu Wang, Yan-Heng Lin, Hsuan-Chao Huang, Morteza Saberikamposhti","doi":"10.1109/is3c57901.2023.00057","DOIUrl":null,"url":null,"abstract":"Watermarking is a technique used to assert ownership over an image, and can be categorized into visible and invisible forms based on the detectability of the watermark. Visible watermarking is more user-friendly and intuitive than invisible methods since it allows individuals to identify image ownership with their own eyes rather than relying on machine-based watermark decoders. To enhance the visual quality of watermarked images and ensure the original images can be fully recovered after visible watermark authentication, a visible watermark removal approach using deep learning-based inpainting is proposed in this paper. Experimental results demonstrate that the watermarked images carrying the visible watermark and auxiliary information achieve peak signal-to-noise ratios (PSNRs) ranging from 41.89 dB to 43.17 dB and structural similarity indices (SSIMs) up to 0.97 to 0.98. Furthermore, our hybrid recovery operations enable the complete restoration of the original images, making them easily readable.","PeriodicalId":142483,"journal":{"name":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visible Watermark Removal with Deep Learning Technology\",\"authors\":\"Chia-Chen Lin, Pei-Yu Wang, Yan-Heng Lin, Hsuan-Chao Huang, Morteza Saberikamposhti\",\"doi\":\"10.1109/is3c57901.2023.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Watermarking is a technique used to assert ownership over an image, and can be categorized into visible and invisible forms based on the detectability of the watermark. Visible watermarking is more user-friendly and intuitive than invisible methods since it allows individuals to identify image ownership with their own eyes rather than relying on machine-based watermark decoders. To enhance the visual quality of watermarked images and ensure the original images can be fully recovered after visible watermark authentication, a visible watermark removal approach using deep learning-based inpainting is proposed in this paper. Experimental results demonstrate that the watermarked images carrying the visible watermark and auxiliary information achieve peak signal-to-noise ratios (PSNRs) ranging from 41.89 dB to 43.17 dB and structural similarity indices (SSIMs) up to 0.97 to 0.98. Furthermore, our hybrid recovery operations enable the complete restoration of the original images, making them easily readable.\",\"PeriodicalId\":142483,\"journal\":{\"name\":\"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/is3c57901.2023.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/is3c57901.2023.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水印是一种用于确定图像所有权的技术,根据水印的可检测性可分为可见和不可见两种形式。可见水印比不可见的方法更用户友好和直观,因为它允许个人用自己的眼睛识别图像所有权,而不是依赖于基于机器的水印解码器。为了提高水印图像的视觉质量,保证经过可见水印认证后能完全恢复原始图像,本文提出了一种基于深度学习的水印去除方法。实验结果表明,采用可见水印和辅助信息的水印图像峰值信噪比(PSNRs)为41.89 ~ 43.17 dB,结构相似度指数(ssim)为0.97 ~ 0.98。此外,我们的混合恢复操作可以完全恢复原始图像,使其易于阅读。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visible Watermark Removal with Deep Learning Technology
Watermarking is a technique used to assert ownership over an image, and can be categorized into visible and invisible forms based on the detectability of the watermark. Visible watermarking is more user-friendly and intuitive than invisible methods since it allows individuals to identify image ownership with their own eyes rather than relying on machine-based watermark decoders. To enhance the visual quality of watermarked images and ensure the original images can be fully recovered after visible watermark authentication, a visible watermark removal approach using deep learning-based inpainting is proposed in this paper. Experimental results demonstrate that the watermarked images carrying the visible watermark and auxiliary information achieve peak signal-to-noise ratios (PSNRs) ranging from 41.89 dB to 43.17 dB and structural similarity indices (SSIMs) up to 0.97 to 0.98. Furthermore, our hybrid recovery operations enable the complete restoration of the original images, making them easily readable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信