变密度空间数据聚类

R. K. Prasad, R. Sarmah
{"title":"变密度空间数据聚类","authors":"R. K. Prasad, R. Sarmah","doi":"10.1109/ICCCT.2011.6075127","DOIUrl":null,"url":null,"abstract":"This paper presents an effective clustering method which can detect embedded and nested clusters over variable density space. The proposed method, VDSC uses a density based approach for detecting clusters of arbitrary shapes, sizes and densities. VDSC was compared with several other comparable algorithms and the experimental results show that our method could detect all clusters effectively.","PeriodicalId":285986,"journal":{"name":"2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Variable density spatial data clustering\",\"authors\":\"R. K. Prasad, R. Sarmah\",\"doi\":\"10.1109/ICCCT.2011.6075127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an effective clustering method which can detect embedded and nested clusters over variable density space. The proposed method, VDSC uses a density based approach for detecting clusters of arbitrary shapes, sizes and densities. VDSC was compared with several other comparable algorithms and the experimental results show that our method could detect all clusters effectively.\",\"PeriodicalId\":285986,\"journal\":{\"name\":\"2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCT.2011.6075127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT.2011.6075127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种有效的聚类方法,可以在变密度空间中检测嵌入和嵌套聚类。提出的方法,VDSC使用基于密度的方法来检测任意形状,大小和密度的簇。将VDSC算法与其他几种可比较的算法进行了比较,实验结果表明我们的方法可以有效地检测到所有的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable density spatial data clustering
This paper presents an effective clustering method which can detect embedded and nested clusters over variable density space. The proposed method, VDSC uses a density based approach for detecting clusters of arbitrary shapes, sizes and densities. VDSC was compared with several other comparable algorithms and the experimental results show that our method could detect all clusters effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信