S. Holla, T. Kumar, Jeevan Revaneppa Hiretanad, K. Deepak, A. V. Narasimhadhan
{"title":"基于自监督学习的低资源语言梵文端到端语音识别","authors":"S. Holla, T. Kumar, Jeevan Revaneppa Hiretanad, K. Deepak, A. V. Narasimhadhan","doi":"10.1109/wispnet54241.2022.9767118","DOIUrl":null,"url":null,"abstract":"We are presenting the work on building a speaker independent, continuous speech recognition system for Samskruta (also called Sanskrit) using self-supervised learning. We have used a Pre-trained model from the Vakyansh team where the model is trained using 10,000 Hrs of data with 23 Indic languages and Fine-tuned it using a data-set containing nearly 78 Hrs of Samskruta audio along with their transcription taken from Vaksancaya - Sanskrit Speech Corpus from IIT Bombay. Acoustic representations are learned in an end-to-end deep learning approach using the wav2vec2.0 architecture from Fairseq. On top of this acoustic model, a language model is used to increase the overall performance. Our system provides a word error rate (WER) of 5.1 % on test data and 2.4% on train data. Meanwhile we built a graphical user interface in the form of a web page using the Flask framework, which provides an interactive platform for the user to record audio and see the transcription in real-time. To the best of our knowledge, our approach using self-supervised learning, gives better performance compared to the state of the art methods.","PeriodicalId":432794,"journal":{"name":"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"End-to-End Speech Recognition for Low Resource Language Sanskrit using Self-Supervised Learning\",\"authors\":\"S. Holla, T. Kumar, Jeevan Revaneppa Hiretanad, K. Deepak, A. V. Narasimhadhan\",\"doi\":\"10.1109/wispnet54241.2022.9767118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are presenting the work on building a speaker independent, continuous speech recognition system for Samskruta (also called Sanskrit) using self-supervised learning. We have used a Pre-trained model from the Vakyansh team where the model is trained using 10,000 Hrs of data with 23 Indic languages and Fine-tuned it using a data-set containing nearly 78 Hrs of Samskruta audio along with their transcription taken from Vaksancaya - Sanskrit Speech Corpus from IIT Bombay. Acoustic representations are learned in an end-to-end deep learning approach using the wav2vec2.0 architecture from Fairseq. On top of this acoustic model, a language model is used to increase the overall performance. Our system provides a word error rate (WER) of 5.1 % on test data and 2.4% on train data. Meanwhile we built a graphical user interface in the form of a web page using the Flask framework, which provides an interactive platform for the user to record audio and see the transcription in real-time. To the best of our knowledge, our approach using self-supervised learning, gives better performance compared to the state of the art methods.\",\"PeriodicalId\":432794,\"journal\":{\"name\":\"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/wispnet54241.2022.9767118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wispnet54241.2022.9767118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
End-to-End Speech Recognition for Low Resource Language Sanskrit using Self-Supervised Learning
We are presenting the work on building a speaker independent, continuous speech recognition system for Samskruta (also called Sanskrit) using self-supervised learning. We have used a Pre-trained model from the Vakyansh team where the model is trained using 10,000 Hrs of data with 23 Indic languages and Fine-tuned it using a data-set containing nearly 78 Hrs of Samskruta audio along with their transcription taken from Vaksancaya - Sanskrit Speech Corpus from IIT Bombay. Acoustic representations are learned in an end-to-end deep learning approach using the wav2vec2.0 architecture from Fairseq. On top of this acoustic model, a language model is used to increase the overall performance. Our system provides a word error rate (WER) of 5.1 % on test data and 2.4% on train data. Meanwhile we built a graphical user interface in the form of a web page using the Flask framework, which provides an interactive platform for the user to record audio and see the transcription in real-time. To the best of our knowledge, our approach using self-supervised learning, gives better performance compared to the state of the art methods.