机载机械臂系统的自适应神经网络控制

Hao Xu, S. Ge, Qiong Liu, Wanyue Jiang, Ruihang Ji
{"title":"机载机械臂系统的自适应神经网络控制","authors":"Hao Xu, S. Ge, Qiong Liu, Wanyue Jiang, Ruihang Ji","doi":"10.1109/IAI50351.2020.9262230","DOIUrl":null,"url":null,"abstract":"In this paper, adaptive neural network control is studied for an Airborne Robotic Manipulator (ARM) system. To handle the uncertainties and disturbances of the ARM system and improve its robustness, radial basis function neural network (RBFNN) is used for approximating unknown dynamics model of the system to realize better adaptive neural network control. With using the adaptive law verified via the Lyapunov's method, the stability of the system and the convergence of the weight adaptation are guaranteed. The simulation studies are performed to illustrate the effectiveness of the controller. The proposed RBFNN-based control scheme is used for approximating errors, which can be effective in making learning objective smaller and learning time shorter compared with conventional approaches.","PeriodicalId":137183,"journal":{"name":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive Neural Network Control of an Airborne Robotic Manipulator System\",\"authors\":\"Hao Xu, S. Ge, Qiong Liu, Wanyue Jiang, Ruihang Ji\",\"doi\":\"10.1109/IAI50351.2020.9262230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, adaptive neural network control is studied for an Airborne Robotic Manipulator (ARM) system. To handle the uncertainties and disturbances of the ARM system and improve its robustness, radial basis function neural network (RBFNN) is used for approximating unknown dynamics model of the system to realize better adaptive neural network control. With using the adaptive law verified via the Lyapunov's method, the stability of the system and the convergence of the weight adaptation are guaranteed. The simulation studies are performed to illustrate the effectiveness of the controller. The proposed RBFNN-based control scheme is used for approximating errors, which can be effective in making learning objective smaller and learning time shorter compared with conventional approaches.\",\"PeriodicalId\":137183,\"journal\":{\"name\":\"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI50351.2020.9262230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI50351.2020.9262230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了机载机械臂(ARM)系统的自适应神经网络控制。为了处理ARM系统的不确定性和扰动,提高其鲁棒性,采用径向基函数神经网络(RBFNN)逼近系统的未知动力学模型,实现较好的自适应神经网络控制。利用Lyapunov方法验证的自适应律,保证了系统的稳定性和权值自适应的收敛性。仿真研究表明了该控制器的有效性。提出的基于rbfnn的控制方法用于误差逼近,与传统方法相比,可以有效地使学习目标更小,学习时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Neural Network Control of an Airborne Robotic Manipulator System
In this paper, adaptive neural network control is studied for an Airborne Robotic Manipulator (ARM) system. To handle the uncertainties and disturbances of the ARM system and improve its robustness, radial basis function neural network (RBFNN) is used for approximating unknown dynamics model of the system to realize better adaptive neural network control. With using the adaptive law verified via the Lyapunov's method, the stability of the system and the convergence of the weight adaptation are guaranteed. The simulation studies are performed to illustrate the effectiveness of the controller. The proposed RBFNN-based control scheme is used for approximating errors, which can be effective in making learning objective smaller and learning time shorter compared with conventional approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信