{"title":"非线性函数和非均匀网络拓扑下神经网络模型压缩的节点修剪准则研究","authors":"K. Nakadai, Yosuke Fukumoto, Ryu Takeda","doi":"10.1109/SLT48900.2021.9383593","DOIUrl":null,"url":null,"abstract":"This paper investigates node-pruning-based compression for non-uniform deep learning models such as acoustic models in automatic speech recognition (ASR). Node pruning for small footprint ASR has been well studied, but most studies assumed a sigmoid as an activation function and uniform or simple fully-connected neural networks without bypass connections. We propose a node pruning method that can be applied to non-sigmoid functions such as ReLU and that can deal with network topology related issues such as bypass connections. To deal with non-sigmoid functions, we extend a node entropy technique to estimate node activities. To cope with non-uniform network topology, we propose three criteria; inter-layer pairing, no bypass connection pruning, and layer-based pruning rate configuration. The proposed method as a combination of these four techniques and criteria was applied to compress a Kaldi's acoustic model with ReLU as a non-linear function, time delay neural networks (TDNN) and bypass connections inspired by residual networks. Experimental results showed that the proposed method achieved a 31% speed increase while maintaining the ASR accuracy to be comparable by taking network topology into consideration.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of Node Pruning Criteria for Neural Networks Model Compression with Non-Linear Function and Non-Uniform Network Topology\",\"authors\":\"K. Nakadai, Yosuke Fukumoto, Ryu Takeda\",\"doi\":\"10.1109/SLT48900.2021.9383593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates node-pruning-based compression for non-uniform deep learning models such as acoustic models in automatic speech recognition (ASR). Node pruning for small footprint ASR has been well studied, but most studies assumed a sigmoid as an activation function and uniform or simple fully-connected neural networks without bypass connections. We propose a node pruning method that can be applied to non-sigmoid functions such as ReLU and that can deal with network topology related issues such as bypass connections. To deal with non-sigmoid functions, we extend a node entropy technique to estimate node activities. To cope with non-uniform network topology, we propose three criteria; inter-layer pairing, no bypass connection pruning, and layer-based pruning rate configuration. The proposed method as a combination of these four techniques and criteria was applied to compress a Kaldi's acoustic model with ReLU as a non-linear function, time delay neural networks (TDNN) and bypass connections inspired by residual networks. Experimental results showed that the proposed method achieved a 31% speed increase while maintaining the ASR accuracy to be comparable by taking network topology into consideration.\",\"PeriodicalId\":243211,\"journal\":{\"name\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT48900.2021.9383593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of Node Pruning Criteria for Neural Networks Model Compression with Non-Linear Function and Non-Uniform Network Topology
This paper investigates node-pruning-based compression for non-uniform deep learning models such as acoustic models in automatic speech recognition (ASR). Node pruning for small footprint ASR has been well studied, but most studies assumed a sigmoid as an activation function and uniform or simple fully-connected neural networks without bypass connections. We propose a node pruning method that can be applied to non-sigmoid functions such as ReLU and that can deal with network topology related issues such as bypass connections. To deal with non-sigmoid functions, we extend a node entropy technique to estimate node activities. To cope with non-uniform network topology, we propose three criteria; inter-layer pairing, no bypass connection pruning, and layer-based pruning rate configuration. The proposed method as a combination of these four techniques and criteria was applied to compress a Kaldi's acoustic model with ReLU as a non-linear function, time delay neural networks (TDNN) and bypass connections inspired by residual networks. Experimental results showed that the proposed method achieved a 31% speed increase while maintaining the ASR accuracy to be comparable by taking network topology into consideration.