四杆并联机构无模型PID模糊控制的设计与实现

Qun Ren, P. Bigras
{"title":"四杆并联机构无模型PID模糊控制的设计与实现","authors":"Qun Ren, P. Bigras","doi":"10.1109/AIM.2015.7222780","DOIUrl":null,"url":null,"abstract":"This paper proposes a model-free PID fuzzy logic control for parallel robot. This kind control differs from conventional classical and modern control techniques, even existed intelligent controls. Nor precise description of dynamics model neither physical parameter is required for construction of the fuzzy control. Takagi-Sugeno-Kang (TSK) fuzzy approach with extended subtractive clustering computing is used to accomplish the integration of information of joint angular displacement, velocity and acceleration for torque identification where the learning datasets are generated by using a PID feedback control. The fuzzy inference system is used for design the nouvelle model-free PID fuzzy feed forward control for the parallel mechanism. Simulation results from numerical study on a 4-bar planar parallel mechanism show the proposed control can reduce joint position and velocity tracking errors with high accuracy and high reliability.","PeriodicalId":199432,"journal":{"name":"2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and implementation of model-free PID fuzzy logic control on a 4-bar parallel mechanism\",\"authors\":\"Qun Ren, P. Bigras\",\"doi\":\"10.1109/AIM.2015.7222780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a model-free PID fuzzy logic control for parallel robot. This kind control differs from conventional classical and modern control techniques, even existed intelligent controls. Nor precise description of dynamics model neither physical parameter is required for construction of the fuzzy control. Takagi-Sugeno-Kang (TSK) fuzzy approach with extended subtractive clustering computing is used to accomplish the integration of information of joint angular displacement, velocity and acceleration for torque identification where the learning datasets are generated by using a PID feedback control. The fuzzy inference system is used for design the nouvelle model-free PID fuzzy feed forward control for the parallel mechanism. Simulation results from numerical study on a 4-bar planar parallel mechanism show the proposed control can reduce joint position and velocity tracking errors with high accuracy and high reliability.\",\"PeriodicalId\":199432,\"journal\":{\"name\":\"2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIM.2015.7222780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIM.2015.7222780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种并联机器人的无模型PID模糊控制方法。这种控制不同于传统的经典控制技术和现代控制技术,甚至存在智能控制。构建模糊控制不需要对动力学模型和物理参数进行精确描述。采用扩展减法聚类计算的Takagi-Sugeno-Kang (TSK)模糊方法,完成关节角位移、速度和加速度信息的集成,实现转矩识别,并通过PID反馈控制生成学习数据集。利用模糊推理系统对并联机构进行了新型无模型PID模糊前馈控制设计。对四杆平面并联机构的数值仿真结果表明,所提出的控制方法能够减小关节位置和速度跟踪误差,具有较高的精度和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and implementation of model-free PID fuzzy logic control on a 4-bar parallel mechanism
This paper proposes a model-free PID fuzzy logic control for parallel robot. This kind control differs from conventional classical and modern control techniques, even existed intelligent controls. Nor precise description of dynamics model neither physical parameter is required for construction of the fuzzy control. Takagi-Sugeno-Kang (TSK) fuzzy approach with extended subtractive clustering computing is used to accomplish the integration of information of joint angular displacement, velocity and acceleration for torque identification where the learning datasets are generated by using a PID feedback control. The fuzzy inference system is used for design the nouvelle model-free PID fuzzy feed forward control for the parallel mechanism. Simulation results from numerical study on a 4-bar planar parallel mechanism show the proposed control can reduce joint position and velocity tracking errors with high accuracy and high reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信