给定噪声输入-输出数据的集成多谱多变量随机线性系统辨识

Jitendra Tugnait
{"title":"给定噪声输入-输出数据的集成多谱多变量随机线性系统辨识","authors":"Jitendra Tugnait","doi":"10.1109/HOST.1997.613523","DOIUrl":null,"url":null,"abstract":"The problem considered is that of identification of unknown parameters of multivariable, linear \"errors-in-variables\" models, i.e., linear systems where measurements of both input and output of the system are noise contaminated. Attention is focused on frequency-domain approaches where the integrated polyspectrum (bispectrum or trispectrum) of the input and the integrated cross-polyspectrum, respectively, of the given time-domain input-output data are exploited. We first develop (computable) expressions for the covariance matrix of the system transfer function estimate and show that the system transfer function matrix estimate is asymptotically complex Gaussian. Then we propose and analyze a pseudo-maximum likelihood (PML) estimator of system parameters using the developed statistics of the system transfer function estimate. Finally two simulation examples are presented.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification of multivariable stochastic linear systems using integrated polyspectrum given noisy input-output data\",\"authors\":\"Jitendra Tugnait\",\"doi\":\"10.1109/HOST.1997.613523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem considered is that of identification of unknown parameters of multivariable, linear \\\"errors-in-variables\\\" models, i.e., linear systems where measurements of both input and output of the system are noise contaminated. Attention is focused on frequency-domain approaches where the integrated polyspectrum (bispectrum or trispectrum) of the input and the integrated cross-polyspectrum, respectively, of the given time-domain input-output data are exploited. We first develop (computable) expressions for the covariance matrix of the system transfer function estimate and show that the system transfer function matrix estimate is asymptotically complex Gaussian. Then we propose and analyze a pseudo-maximum likelihood (PML) estimator of system parameters using the developed statistics of the system transfer function estimate. Finally two simulation examples are presented.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

所考虑的问题是辨识多变量的未知参数,线性“变量误差”模型,即线性系统的输入和输出的测量都是噪声污染的。注意力集中在频域方法上,其中输入的集成多谱(双谱或三谱)和给定时域输入输出数据的集成交叉多谱分别被利用。首先给出了系统传递函数估计的协方差矩阵的(可计算)表达式,并证明了系统传递函数矩阵估计是渐近复高斯的。然后利用系统传递函数估计的发展统计量,提出并分析了系统参数的伪极大似然估计。最后给出了两个仿真实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of multivariable stochastic linear systems using integrated polyspectrum given noisy input-output data
The problem considered is that of identification of unknown parameters of multivariable, linear "errors-in-variables" models, i.e., linear systems where measurements of both input and output of the system are noise contaminated. Attention is focused on frequency-domain approaches where the integrated polyspectrum (bispectrum or trispectrum) of the input and the integrated cross-polyspectrum, respectively, of the given time-domain input-output data are exploited. We first develop (computable) expressions for the covariance matrix of the system transfer function estimate and show that the system transfer function matrix estimate is asymptotically complex Gaussian. Then we propose and analyze a pseudo-maximum likelihood (PML) estimator of system parameters using the developed statistics of the system transfer function estimate. Finally two simulation examples are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信