{"title":"采用新型可变直流链路电压输入电流控制的三相两相箝位升压统一功率因数整流器","authors":"D. Menzi, D. Bortis, J. Kolar","doi":"10.1109/PEAC.2018.8590599","DOIUrl":null,"url":null,"abstract":"Battery chargers supplied from the three-phase mains are typically realized as two-stage systems consisting of a three-phase PFC boost-type rectifier with an output DC link capacitor followed by a DC/DC buck converter if boost and buck functionality is required. In this paper, a new modulation scheme for this topology is presented, where always only one out of three rectifier half-bridges is pulse width modulated, while the remaining two phases are clamped and therefore a higher efficiency is achieved. This modulation concept with a minimum number of active half-bridges, denoted as 1/3 rectifier, becomes possible if in contrast to other modulation schemes the intermediate DC link voltage is varied in a six-pulse voltage fashion, while still sinusoidal grid currents in phase with their corresponding phase voltages and a constant battery output voltage are obtained. In this paper, a detailed description of the novel 1/3 rectifier's operating principle and the corresponding control structure are presented and the proper closed loop operation is verified by means of a circuit simulation. Finally, the performance gain of the 1/3 rectifier control scheme compared to conventional modulation schemes is evaluated by means of a virtual prototype system.","PeriodicalId":446770,"journal":{"name":"2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Three-Phase Two-Phase-Clamped Boost-Buck Unity Power Factor Rectifier Employing Novel Variable DC Link Voltage Input Current Control\",\"authors\":\"D. Menzi, D. Bortis, J. Kolar\",\"doi\":\"10.1109/PEAC.2018.8590599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Battery chargers supplied from the three-phase mains are typically realized as two-stage systems consisting of a three-phase PFC boost-type rectifier with an output DC link capacitor followed by a DC/DC buck converter if boost and buck functionality is required. In this paper, a new modulation scheme for this topology is presented, where always only one out of three rectifier half-bridges is pulse width modulated, while the remaining two phases are clamped and therefore a higher efficiency is achieved. This modulation concept with a minimum number of active half-bridges, denoted as 1/3 rectifier, becomes possible if in contrast to other modulation schemes the intermediate DC link voltage is varied in a six-pulse voltage fashion, while still sinusoidal grid currents in phase with their corresponding phase voltages and a constant battery output voltage are obtained. In this paper, a detailed description of the novel 1/3 rectifier's operating principle and the corresponding control structure are presented and the proper closed loop operation is verified by means of a circuit simulation. Finally, the performance gain of the 1/3 rectifier control scheme compared to conventional modulation schemes is evaluated by means of a virtual prototype system.\",\"PeriodicalId\":446770,\"journal\":{\"name\":\"2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEAC.2018.8590599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEAC.2018.8590599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three-Phase Two-Phase-Clamped Boost-Buck Unity Power Factor Rectifier Employing Novel Variable DC Link Voltage Input Current Control
Battery chargers supplied from the three-phase mains are typically realized as two-stage systems consisting of a three-phase PFC boost-type rectifier with an output DC link capacitor followed by a DC/DC buck converter if boost and buck functionality is required. In this paper, a new modulation scheme for this topology is presented, where always only one out of three rectifier half-bridges is pulse width modulated, while the remaining two phases are clamped and therefore a higher efficiency is achieved. This modulation concept with a minimum number of active half-bridges, denoted as 1/3 rectifier, becomes possible if in contrast to other modulation schemes the intermediate DC link voltage is varied in a six-pulse voltage fashion, while still sinusoidal grid currents in phase with their corresponding phase voltages and a constant battery output voltage are obtained. In this paper, a detailed description of the novel 1/3 rectifier's operating principle and the corresponding control structure are presented and the proper closed loop operation is verified by means of a circuit simulation. Finally, the performance gain of the 1/3 rectifier control scheme compared to conventional modulation schemes is evaluated by means of a virtual prototype system.