{"title":"自组织毫米波网络:一种基于机器学习的功率分配方案","authors":"Roohollah Amiri, H. Mehrpouyan","doi":"10.1109/GSMM.2018.8439323","DOIUrl":null,"url":null,"abstract":"Millimeter-wave (mmWave) communication is anticipated to provide significant throughout gains in urban scenarios. To this end, network densification is a necessity to meet the high traffic volume generated by smart phones, tablets, and sensory devices while overcoming large pathloss and high blockages at mmWaves frequencies. These denser networks are created with users deploying small mm Wave base stations (BSs) in a plug-and-play fashion. Although, this deployment method provides the required density, the amorphous deployment of BSs needs distributed management. To address this difficulty, we propose a self-organizing method to allocate power to mm Wave BSs in an ultra dense network. The proposed method consists of two parts: clustering using fast local clustering and power allocation via Q-learning. The important features of the proposed method are its scalability and self-organizing capabilities, which are both important features of 5G. Our simulations demonstrate that the introduced method, provides required quality of service (QoS) for all the users independent of the size of the network.","PeriodicalId":441407,"journal":{"name":"2018 11th Global Symposium on Millimeter Waves (GSMM)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Self-Organizing mm Wave Networks: A Power Allocation Scheme Based on Machine Learning\",\"authors\":\"Roohollah Amiri, H. Mehrpouyan\",\"doi\":\"10.1109/GSMM.2018.8439323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter-wave (mmWave) communication is anticipated to provide significant throughout gains in urban scenarios. To this end, network densification is a necessity to meet the high traffic volume generated by smart phones, tablets, and sensory devices while overcoming large pathloss and high blockages at mmWaves frequencies. These denser networks are created with users deploying small mm Wave base stations (BSs) in a plug-and-play fashion. Although, this deployment method provides the required density, the amorphous deployment of BSs needs distributed management. To address this difficulty, we propose a self-organizing method to allocate power to mm Wave BSs in an ultra dense network. The proposed method consists of two parts: clustering using fast local clustering and power allocation via Q-learning. The important features of the proposed method are its scalability and self-organizing capabilities, which are both important features of 5G. Our simulations demonstrate that the introduced method, provides required quality of service (QoS) for all the users independent of the size of the network.\",\"PeriodicalId\":441407,\"journal\":{\"name\":\"2018 11th Global Symposium on Millimeter Waves (GSMM)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 11th Global Symposium on Millimeter Waves (GSMM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSMM.2018.8439323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th Global Symposium on Millimeter Waves (GSMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSMM.2018.8439323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-Organizing mm Wave Networks: A Power Allocation Scheme Based on Machine Learning
Millimeter-wave (mmWave) communication is anticipated to provide significant throughout gains in urban scenarios. To this end, network densification is a necessity to meet the high traffic volume generated by smart phones, tablets, and sensory devices while overcoming large pathloss and high blockages at mmWaves frequencies. These denser networks are created with users deploying small mm Wave base stations (BSs) in a plug-and-play fashion. Although, this deployment method provides the required density, the amorphous deployment of BSs needs distributed management. To address this difficulty, we propose a self-organizing method to allocate power to mm Wave BSs in an ultra dense network. The proposed method consists of two parts: clustering using fast local clustering and power allocation via Q-learning. The important features of the proposed method are its scalability and self-organizing capabilities, which are both important features of 5G. Our simulations demonstrate that the introduced method, provides required quality of service (QoS) for all the users independent of the size of the network.