用最优同伦渐近方法求解强非线性分数阶振子问题

Ghenaiet Bahia, Ouannas Adel
{"title":"用最优同伦渐近方法求解强非线性分数阶振子问题","authors":"Ghenaiet Bahia, Ouannas Adel","doi":"10.1109/ICRAMI52622.2021.9585990","DOIUrl":null,"url":null,"abstract":"The majority of strongly nonlinear oscillators of higher fractional order do not have accurate analytical solution. As a result, this work provides an approximate approach, known as the optimal homotopy Asymptotic Method (OHAM) to provide approximate analytic solution of strongly oscillators having fractional derivatives. We give an exemple to show that the OHAM is a reliable approach to control the convergence of approximate solution.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution Of Strongly Nonlinear Fractional-Order Oscillators Problems By Using The Optimal Homotopy Asymptotic Method\",\"authors\":\"Ghenaiet Bahia, Ouannas Adel\",\"doi\":\"10.1109/ICRAMI52622.2021.9585990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority of strongly nonlinear oscillators of higher fractional order do not have accurate analytical solution. As a result, this work provides an approximate approach, known as the optimal homotopy Asymptotic Method (OHAM) to provide approximate analytic solution of strongly oscillators having fractional derivatives. We give an exemple to show that the OHAM is a reliable approach to control the convergence of approximate solution.\",\"PeriodicalId\":440750,\"journal\":{\"name\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMI52622.2021.9585990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数高分数阶强非线性振子没有精确的解析解。因此,这项工作提供了一种近似方法,称为最优同伦渐近方法(OHAM),以提供具有分数阶导数的强振子的近似解析解。最后给出了一个算例,证明了OHAM是一种控制近似解收敛性的可靠方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution Of Strongly Nonlinear Fractional-Order Oscillators Problems By Using The Optimal Homotopy Asymptotic Method
The majority of strongly nonlinear oscillators of higher fractional order do not have accurate analytical solution. As a result, this work provides an approximate approach, known as the optimal homotopy Asymptotic Method (OHAM) to provide approximate analytic solution of strongly oscillators having fractional derivatives. We give an exemple to show that the OHAM is a reliable approach to control the convergence of approximate solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信