基于改进HOT SAX算法的流时间序列不协调发现

Pham Minh Chau, B. Duc, D. T. Anh
{"title":"基于改进HOT SAX算法的流时间序列不协调发现","authors":"Pham Minh Chau, B. Duc, D. T. Anh","doi":"10.1145/3287921.3287929","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an improved variant of HOT SAX algorithm, called HS-Squeezer, for efficient discord detection in static time series. HS-Squeezer employs clustering rather than augmented trie to arrange two ordering heuristics in HOT SAX. Furthermore, we introduce HS-Squeezer-Stream, the application of HS-Squeezer in the framework for detecting local discords in streaming time series. The experimental results reveal that HS-Squeezer can detect the same quality discords as those detected by HOT SAX but with much shorter run time. Furthermore, HS-Squeezer-Stream demonstrates a fast response in handling time series streams with quality local discords detected.","PeriodicalId":448008,"journal":{"name":"Proceedings of the 9th International Symposium on Information and Communication Technology","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Discord Discovery in Streaming Time Series based on an Improved HOT SAX Algorithm\",\"authors\":\"Pham Minh Chau, B. Duc, D. T. Anh\",\"doi\":\"10.1145/3287921.3287929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an improved variant of HOT SAX algorithm, called HS-Squeezer, for efficient discord detection in static time series. HS-Squeezer employs clustering rather than augmented trie to arrange two ordering heuristics in HOT SAX. Furthermore, we introduce HS-Squeezer-Stream, the application of HS-Squeezer in the framework for detecting local discords in streaming time series. The experimental results reveal that HS-Squeezer can detect the same quality discords as those detected by HOT SAX but with much shorter run time. Furthermore, HS-Squeezer-Stream demonstrates a fast response in handling time series streams with quality local discords detected.\",\"PeriodicalId\":448008,\"journal\":{\"name\":\"Proceedings of the 9th International Symposium on Information and Communication Technology\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Symposium on Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3287921.3287929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3287921.3287929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们提出了一种改进的HOT SAX算法,称为HS-Squeezer,用于在静态时间序列中有效地检测不和谐。HS-Squeezer在HOT SAX中使用聚类而不是增强尝试来安排两个排序启发式。此外,我们还介绍了HS-Squeezer- stream,这是HS-Squeezer在流时间序列局部不和谐检测框架中的应用。实验结果表明,HS-Squeezer可以检测出与HOT SAX检测相同质量的不和谐,但运行时间要短得多。此外,HS-Squeezer-Stream在处理检测到高质量局部不和谐的时间序列流时表现出快速响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discord Discovery in Streaming Time Series based on an Improved HOT SAX Algorithm
In this paper, we propose an improved variant of HOT SAX algorithm, called HS-Squeezer, for efficient discord detection in static time series. HS-Squeezer employs clustering rather than augmented trie to arrange two ordering heuristics in HOT SAX. Furthermore, we introduce HS-Squeezer-Stream, the application of HS-Squeezer in the framework for detecting local discords in streaming time series. The experimental results reveal that HS-Squeezer can detect the same quality discords as those detected by HOT SAX but with much shorter run time. Furthermore, HS-Squeezer-Stream demonstrates a fast response in handling time series streams with quality local discords detected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信