多线性主成分分析的新框架

Cagri Ozdemir, R. Hoover, Kyle A. Caudle
{"title":"多线性主成分分析的新框架","authors":"Cagri Ozdemir, R. Hoover, Kyle A. Caudle","doi":"10.1109/ICIP42928.2021.9506729","DOIUrl":null,"url":null,"abstract":"Two-directional two-dimensional principal component analysis ((2D$)^{2}$PCA) has shown promising results for it’s ability to both represent and recognize facial images. The current paper extends these results into a multilinear framework (referred to as two-directional Tensor PCA or 2DTPCA for short) using a recently defined tensor operator for 3rd-order tensors. The approach proceeds by first computing a low-dimensional projection tensor for the row-space of the image data (generally referred to as mode-l) and then subsequently computing a low-dimensional projection tensor for the column space of the image data (generally referred to as mode-3). Experimental results are presented on the ORL, extended Yale-B, COIL100, and MNIST data sets that show the proposed approach outperforms traditional “ tensor-based” PCA approaches with a much smaller subspace dimension in terms of recognition rates.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"2DTPCA: A New Framework for Multilinear Principal Component Analysis\",\"authors\":\"Cagri Ozdemir, R. Hoover, Kyle A. Caudle\",\"doi\":\"10.1109/ICIP42928.2021.9506729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-directional two-dimensional principal component analysis ((2D$)^{2}$PCA) has shown promising results for it’s ability to both represent and recognize facial images. The current paper extends these results into a multilinear framework (referred to as two-directional Tensor PCA or 2DTPCA for short) using a recently defined tensor operator for 3rd-order tensors. The approach proceeds by first computing a low-dimensional projection tensor for the row-space of the image data (generally referred to as mode-l) and then subsequently computing a low-dimensional projection tensor for the column space of the image data (generally referred to as mode-3). Experimental results are presented on the ORL, extended Yale-B, COIL100, and MNIST data sets that show the proposed approach outperforms traditional “ tensor-based” PCA approaches with a much smaller subspace dimension in terms of recognition rates.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

双向二维主成分分析((2D$)^{2}$PCA)在表示和识别面部图像的能力方面显示出令人满意的结果。本文使用最近定义的三阶张量张量算子将这些结果扩展到一个多线性框架(称为双向张量PCA或简称2DTPCA)。该方法首先计算图像数据行空间的低维投影张量(通常称为模式- 1),然后计算图像数据列空间的低维投影张量(通常称为模式-3)。在ORL、扩展Yale-B、COIL100和MNIST数据集上的实验结果表明,所提出的方法在识别率方面优于传统的“基于张量”的PCA方法,并且子空间维度要小得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2DTPCA: A New Framework for Multilinear Principal Component Analysis
Two-directional two-dimensional principal component analysis ((2D$)^{2}$PCA) has shown promising results for it’s ability to both represent and recognize facial images. The current paper extends these results into a multilinear framework (referred to as two-directional Tensor PCA or 2DTPCA for short) using a recently defined tensor operator for 3rd-order tensors. The approach proceeds by first computing a low-dimensional projection tensor for the row-space of the image data (generally referred to as mode-l) and then subsequently computing a low-dimensional projection tensor for the column space of the image data (generally referred to as mode-3). Experimental results are presented on the ORL, extended Yale-B, COIL100, and MNIST data sets that show the proposed approach outperforms traditional “ tensor-based” PCA approaches with a much smaller subspace dimension in terms of recognition rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信