基于电路表示的布尔函数和多值函数谱变换的快速计算算法

R. Krenz, E. Dubrova, A. Kuehlmann
{"title":"基于电路表示的布尔函数和多值函数谱变换的快速计算算法","authors":"R. Krenz, E. Dubrova, A. Kuehlmann","doi":"10.1109/ISMVL.2003.1201426","DOIUrl":null,"url":null,"abstract":"In this paper we present a fast algorithm for computing the value of a spectral transform of Boolean or multiple-valued functions for a given assignment of input variables. Our current implementation is for arithmetic transform, because our work is primarily aimed at optimizing the performance of probabilistic verification methods. However, the presented technique is equally applicable for other discrete transforms, e.g. Walsh or Reed-Muller transforms. Previous methods for computing spectral transforms used truth tables, sum-of-product expressions, or various derivatives of decision diagrams. They were fundamentally limited by the excessive memory requirements of these data structures. We present a new algorithm that partitions the computation of the spectral transform based on the dominator relations of the circuit graph representing the function to be transformed. As a result, the presented algorithm can handle larger functions than previously possible.","PeriodicalId":434515,"journal":{"name":"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Fast algorithm for computing spectral transforms of Boolean and multiple-valued functions on circuit representation\",\"authors\":\"R. Krenz, E. Dubrova, A. Kuehlmann\",\"doi\":\"10.1109/ISMVL.2003.1201426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a fast algorithm for computing the value of a spectral transform of Boolean or multiple-valued functions for a given assignment of input variables. Our current implementation is for arithmetic transform, because our work is primarily aimed at optimizing the performance of probabilistic verification methods. However, the presented technique is equally applicable for other discrete transforms, e.g. Walsh or Reed-Muller transforms. Previous methods for computing spectral transforms used truth tables, sum-of-product expressions, or various derivatives of decision diagrams. They were fundamentally limited by the excessive memory requirements of these data structures. We present a new algorithm that partitions the computation of the spectral transform based on the dominator relations of the circuit graph representing the function to be transformed. As a result, the presented algorithm can handle larger functions than previously possible.\",\"PeriodicalId\":434515,\"journal\":{\"name\":\"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2003.1201426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2003.1201426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文给出了一种计算给定输入变量赋值时布尔函数或多值函数谱变换值的快速算法。我们目前的实现是算术变换,因为我们的工作主要是为了优化概率验证方法的性能。然而,所提出的技术同样适用于其他离散变换,例如Walsh或Reed-Muller变换。以前计算谱变换的方法使用真值表、乘积和表达式或决策图的各种导数。它们从根本上受到这些数据结构的过多内存需求的限制。提出了一种基于表示待变换函数的电路图的支配关系划分谱变换计算量的新算法。因此,所提出的算法可以处理比以前更大的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast algorithm for computing spectral transforms of Boolean and multiple-valued functions on circuit representation
In this paper we present a fast algorithm for computing the value of a spectral transform of Boolean or multiple-valued functions for a given assignment of input variables. Our current implementation is for arithmetic transform, because our work is primarily aimed at optimizing the performance of probabilistic verification methods. However, the presented technique is equally applicable for other discrete transforms, e.g. Walsh or Reed-Muller transforms. Previous methods for computing spectral transforms used truth tables, sum-of-product expressions, or various derivatives of decision diagrams. They were fundamentally limited by the excessive memory requirements of these data structures. We present a new algorithm that partitions the computation of the spectral transform based on the dominator relations of the circuit graph representing the function to be transformed. As a result, the presented algorithm can handle larger functions than previously possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信