基于滑动窗口Koopman模态分解的在线相干分析

H. Chamorro, A. Guel-Cortez, C. A. Ordonez, M. Paternina, M. Budišić
{"title":"基于滑动窗口Koopman模态分解的在线相干分析","authors":"H. Chamorro, A. Guel-Cortez, C. A. Ordonez, M. Paternina, M. Budišić","doi":"10.1109/GreenTech48523.2021.00081","DOIUrl":null,"url":null,"abstract":"Nowadays, power systems complexity requires of innovative methods to monitor and provide an adequate online assessment. Coherency identification (based on data-driven methods) is a potential tool that can be integrated into the system infrastructure for the protection and resilience of the power grid. This work presents a modification of the Koopman Mode Decomposition (KMD) by adding a sliding-window to emulate the processed system's signals and to visualise the data concentration as a Transmission System Operator (TSO). Finally, we present a study of a data-set of rotor angle observables from the Nordic 32 test system after a disturbance to observe the rapid coherency at specific time-shots. This study provides evidence that the proposed modified KMD is a fast and robust approach to analyze large time-domain simulation data.","PeriodicalId":146759,"journal":{"name":"2021 IEEE Green Technologies Conference (GreenTech)","volume":"433 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On-line Coherency Analysis based on Sliding-Window Koopman Mode Decomposition\",\"authors\":\"H. Chamorro, A. Guel-Cortez, C. A. Ordonez, M. Paternina, M. Budišić\",\"doi\":\"10.1109/GreenTech48523.2021.00081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, power systems complexity requires of innovative methods to monitor and provide an adequate online assessment. Coherency identification (based on data-driven methods) is a potential tool that can be integrated into the system infrastructure for the protection and resilience of the power grid. This work presents a modification of the Koopman Mode Decomposition (KMD) by adding a sliding-window to emulate the processed system's signals and to visualise the data concentration as a Transmission System Operator (TSO). Finally, we present a study of a data-set of rotor angle observables from the Nordic 32 test system after a disturbance to observe the rapid coherency at specific time-shots. This study provides evidence that the proposed modified KMD is a fast and robust approach to analyze large time-domain simulation data.\",\"PeriodicalId\":146759,\"journal\":{\"name\":\"2021 IEEE Green Technologies Conference (GreenTech)\",\"volume\":\"433 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Green Technologies Conference (GreenTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GreenTech48523.2021.00081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Green Technologies Conference (GreenTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GreenTech48523.2021.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如今,电力系统的复杂性需要创新的监测方法,并提供充分的在线评估。一致性识别(基于数据驱动的方法)是一种潜在的工具,可以集成到系统基础设施中,以保护和恢复电网。这项工作提出了对库普曼模态分解(KMD)的修改,通过添加滑动窗口来模拟处理系统的信号,并将数据集中可视化为传输系统算子(TSO)。最后,我们研究了北欧32测试系统的转子角观测数据集,在特定时间点观测扰动后的快速相干。该研究证明了改进的KMD是一种快速、鲁棒的分析大时域仿真数据的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-line Coherency Analysis based on Sliding-Window Koopman Mode Decomposition
Nowadays, power systems complexity requires of innovative methods to monitor and provide an adequate online assessment. Coherency identification (based on data-driven methods) is a potential tool that can be integrated into the system infrastructure for the protection and resilience of the power grid. This work presents a modification of the Koopman Mode Decomposition (KMD) by adding a sliding-window to emulate the processed system's signals and to visualise the data concentration as a Transmission System Operator (TSO). Finally, we present a study of a data-set of rotor angle observables from the Nordic 32 test system after a disturbance to observe the rapid coherency at specific time-shots. This study provides evidence that the proposed modified KMD is a fast and robust approach to analyze large time-domain simulation data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信