比起可爱,更像猫?形容词-名词对的可解释性预测

Delia Fernandez, A. Woodward, Víctor Campos, Xavier Giró-i-Nieto, Brendan Jou, Shih-Fu Chang
{"title":"比起可爱,更像猫?形容词-名词对的可解释性预测","authors":"Delia Fernandez, A. Woodward, Víctor Campos, Xavier Giró-i-Nieto, Brendan Jou, Shih-Fu Chang","doi":"10.1145/3132515.3132520","DOIUrl":null,"url":null,"abstract":"The increasing availability of affect-rich multimedia resources has bolstered interest in understanding sentiment and emotions in and from visual content. Adjective-noun pairs (ANP) are a popular mid-level semantic construct for capturing affect via visually detectable concepts such as \"cute dog\" or \"beautiful landscape\". Current state-of-the-art methods approach ANP prediction by considering each of these compound concepts as individual tokens, ignoring the underlying relationships in ANPs. This work aims at disentangling the contributions of the »adjectives» and »nouns» in the visual prediction of ANPs. Two specialised classifiers, one trained for detecting adjectives and another for nouns, are fused to predict 553 different ANPs. The resulting ANP prediction model is more interpretable as it allows us to study contributions of the adjective and noun components.","PeriodicalId":395519,"journal":{"name":"Proceedings of the Workshop on Multimodal Understanding of Social, Affective and Subjective Attributes","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"More Cat than Cute?: Interpretable Prediction of Adjective-Noun Pairs\",\"authors\":\"Delia Fernandez, A. Woodward, Víctor Campos, Xavier Giró-i-Nieto, Brendan Jou, Shih-Fu Chang\",\"doi\":\"10.1145/3132515.3132520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing availability of affect-rich multimedia resources has bolstered interest in understanding sentiment and emotions in and from visual content. Adjective-noun pairs (ANP) are a popular mid-level semantic construct for capturing affect via visually detectable concepts such as \\\"cute dog\\\" or \\\"beautiful landscape\\\". Current state-of-the-art methods approach ANP prediction by considering each of these compound concepts as individual tokens, ignoring the underlying relationships in ANPs. This work aims at disentangling the contributions of the »adjectives» and »nouns» in the visual prediction of ANPs. Two specialised classifiers, one trained for detecting adjectives and another for nouns, are fused to predict 553 different ANPs. The resulting ANP prediction model is more interpretable as it allows us to study contributions of the adjective and noun components.\",\"PeriodicalId\":395519,\"journal\":{\"name\":\"Proceedings of the Workshop on Multimodal Understanding of Social, Affective and Subjective Attributes\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Multimodal Understanding of Social, Affective and Subjective Attributes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132515.3132520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Multimodal Understanding of Social, Affective and Subjective Attributes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132515.3132520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

情感丰富的多媒体资源越来越多,这增强了人们对理解视觉内容中的情感和情感的兴趣。形容词-名词对(ANP)是一种流行的中级语义结构,用于通过视觉上可检测的概念(如“可爱的狗”或“美丽的风景”)捕捉情感。目前最先进的方法通过将这些复合概念中的每一个作为单独的令牌来进行ANP预测,忽略了ANP中的潜在关系。这项工作旨在解开“形容词”和“名词”在anp视觉预测中的贡献。两个专门的分类器,一个用于检测形容词,另一个用于检测名词,融合在一起预测553种不同的anp。由此产生的ANP预测模型更具可解释性,因为它允许我们研究形容词和名词成分的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
More Cat than Cute?: Interpretable Prediction of Adjective-Noun Pairs
The increasing availability of affect-rich multimedia resources has bolstered interest in understanding sentiment and emotions in and from visual content. Adjective-noun pairs (ANP) are a popular mid-level semantic construct for capturing affect via visually detectable concepts such as "cute dog" or "beautiful landscape". Current state-of-the-art methods approach ANP prediction by considering each of these compound concepts as individual tokens, ignoring the underlying relationships in ANPs. This work aims at disentangling the contributions of the »adjectives» and »nouns» in the visual prediction of ANPs. Two specialised classifiers, one trained for detecting adjectives and another for nouns, are fused to predict 553 different ANPs. The resulting ANP prediction model is more interpretable as it allows us to study contributions of the adjective and noun components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信