一种用于非线性电机问题三维有限元分析的有效区域分解方法

Wa Yao, Jianming Jin, P. Krein
{"title":"一种用于非线性电机问题三维有限元分析的有效区域分解方法","authors":"Wa Yao, Jianming Jin, P. Krein","doi":"10.1109/IEMDC.2013.6556171","DOIUrl":null,"url":null,"abstract":"The dual-primal finite element tearing and interconnecting (FETI-DP) method is combined with the Newton-Raphson method to expand the capability and improve the efficiency of three-dimensional finite element analysis (FEA) of nonlinear electromechanical and electric machine problems. Despite its modeling capability and high degree of accuracy, FEA has high computational complexity, especially for nonlinear analysis. The FETI-DP method is a robust domain decomposition method, which is a suitable choice for improving the efficiency of large-scale 3-D nonlinear FEA. The FETI-DP method decomposes the original large-scale problem into multiple subdomains, which can then be handled by parallel computing techniques so that the total computation time is reduced significantly. Linear and nonlinear regions are separated using the FETI-DP method. This further improves simulation efficiency and flexibility. Cubic splines and relaxation techniques are adopted to ensure stable and fast convergence of the Newton-Raphson method.","PeriodicalId":199452,"journal":{"name":"2013 International Electric Machines & Drives Conference","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An efficient domain decomposition method for 3-D finite element analysis of nonlinear electric machine problems\",\"authors\":\"Wa Yao, Jianming Jin, P. Krein\",\"doi\":\"10.1109/IEMDC.2013.6556171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dual-primal finite element tearing and interconnecting (FETI-DP) method is combined with the Newton-Raphson method to expand the capability and improve the efficiency of three-dimensional finite element analysis (FEA) of nonlinear electromechanical and electric machine problems. Despite its modeling capability and high degree of accuracy, FEA has high computational complexity, especially for nonlinear analysis. The FETI-DP method is a robust domain decomposition method, which is a suitable choice for improving the efficiency of large-scale 3-D nonlinear FEA. The FETI-DP method decomposes the original large-scale problem into multiple subdomains, which can then be handled by parallel computing techniques so that the total computation time is reduced significantly. Linear and nonlinear regions are separated using the FETI-DP method. This further improves simulation efficiency and flexibility. Cubic splines and relaxation techniques are adopted to ensure stable and fast convergence of the Newton-Raphson method.\",\"PeriodicalId\":199452,\"journal\":{\"name\":\"2013 International Electric Machines & Drives Conference\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Electric Machines & Drives Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMDC.2013.6556171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Electric Machines & Drives Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2013.6556171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将双元有限元撕裂互连法(FETI-DP)与牛顿-拉夫森法相结合,扩展了非线性机电、电机问题三维有限元分析的能力,提高了分析效率。有限元分析具有较强的建模能力和较高的精度,但其计算复杂度较高,尤其是非线性分析。FETI-DP方法是一种鲁棒的区域分解方法,是提高大规模三维非线性有限元分析效率的合适选择。FETI-DP方法将原大规模问题分解为多个子域,然后通过并行计算技术进行处理,从而大大减少了总计算时间。利用FETI-DP方法分离了线性和非线性区域。这进一步提高了仿真的效率和灵活性。采用三次样条和松弛技术保证了Newton-Raphson方法的稳定和快速收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient domain decomposition method for 3-D finite element analysis of nonlinear electric machine problems
The dual-primal finite element tearing and interconnecting (FETI-DP) method is combined with the Newton-Raphson method to expand the capability and improve the efficiency of three-dimensional finite element analysis (FEA) of nonlinear electromechanical and electric machine problems. Despite its modeling capability and high degree of accuracy, FEA has high computational complexity, especially for nonlinear analysis. The FETI-DP method is a robust domain decomposition method, which is a suitable choice for improving the efficiency of large-scale 3-D nonlinear FEA. The FETI-DP method decomposes the original large-scale problem into multiple subdomains, which can then be handled by parallel computing techniques so that the total computation time is reduced significantly. Linear and nonlinear regions are separated using the FETI-DP method. This further improves simulation efficiency and flexibility. Cubic splines and relaxation techniques are adopted to ensure stable and fast convergence of the Newton-Raphson method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信