在KNIME分析平台中使用各种聚类算法进行客户流失预测分析

I. Franciska, B. Swaminathan
{"title":"在KNIME分析平台中使用各种聚类算法进行客户流失预测分析","authors":"I. Franciska, B. Swaminathan","doi":"10.1109/SSPS.2017.8071585","DOIUrl":null,"url":null,"abstract":"In data mining techniques, Clustering is a performed by grouping objects based on similarity of its characteristics to provide patterns and knowledge of given user data. Different types of clustering algorithms called partitioning, hierarchical and grid based clustering methods. Here k-means clustering, k-medoids clustering, Hierarchical clustering, DBSCAN and Fuzzy c means clustering. Clustering algorithms are used for customer churn analysis; one of the important reasons is that the cost of increasing a new customer is much higher than retaining an existing customer by using customer churn analysis. Initially KNIME analytics platform is used to analyse and visualization of data and later it is used to create model, rules and interactive views ofdata.","PeriodicalId":382353,"journal":{"name":"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Churn prediction analysis using various clustering algorithms in KNIME analytics platform\",\"authors\":\"I. Franciska, B. Swaminathan\",\"doi\":\"10.1109/SSPS.2017.8071585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In data mining techniques, Clustering is a performed by grouping objects based on similarity of its characteristics to provide patterns and knowledge of given user data. Different types of clustering algorithms called partitioning, hierarchical and grid based clustering methods. Here k-means clustering, k-medoids clustering, Hierarchical clustering, DBSCAN and Fuzzy c means clustering. Clustering algorithms are used for customer churn analysis; one of the important reasons is that the cost of increasing a new customer is much higher than retaining an existing customer by using customer churn analysis. Initially KNIME analytics platform is used to analyse and visualization of data and later it is used to create model, rules and interactive views ofdata.\",\"PeriodicalId\":382353,\"journal\":{\"name\":\"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSPS.2017.8071585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSPS.2017.8071585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在数据挖掘技术中,聚类是根据对象特征的相似性对对象进行分组,以提供给定用户数据的模式和知识。不同类型的聚类算法称为分区、分层和基于网格的聚类方法。这里有k-means聚类、k- medidoids聚类、Hierarchical聚类、DBSCAN聚类和Fuzzy c means聚类。聚类算法用于客户流失分析;其中一个重要的原因是,通过使用客户流失分析,增加新客户的成本要比保留现有客户的成本高得多。KNIME分析平台最初用于分析和可视化数据,后来用于创建模型,规则和数据的交互式视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Churn prediction analysis using various clustering algorithms in KNIME analytics platform
In data mining techniques, Clustering is a performed by grouping objects based on similarity of its characteristics to provide patterns and knowledge of given user data. Different types of clustering algorithms called partitioning, hierarchical and grid based clustering methods. Here k-means clustering, k-medoids clustering, Hierarchical clustering, DBSCAN and Fuzzy c means clustering. Clustering algorithms are used for customer churn analysis; one of the important reasons is that the cost of increasing a new customer is much higher than retaining an existing customer by using customer churn analysis. Initially KNIME analytics platform is used to analyse and visualization of data and later it is used to create model, rules and interactive views ofdata.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信