外加电场作用下硅薄膜的晶相破坏及激光光谱检测

SPIE OPTO Pub Date : 2016-03-15 DOI:10.1117/12.2208270
D. E. Milovzorov
{"title":"外加电场作用下硅薄膜的晶相破坏及激光光谱检测","authors":"D. E. Milovzorov","doi":"10.1117/12.2208270","DOIUrl":null,"url":null,"abstract":"We studied the microcrystalline and nanocrystalline silicon thin films by means of Raman spectroscopy technique. The applied external electric field causes the changes in the electric dipoles’ orientations to compensate the external field, and migration the atom of impurities, such as hydrogen, and point defects. The Si-O dipoles play the most significant role because of electron affinity for oxygen. Phonon eigen-frequencies 480 cm-1 for amorphous silicon Raman spectra around and 520 cm-1 for crystalline TO and LO modes are varied in their energy positions because of wide spread in bonding variation for Si and O atoms, types of dipoles for different point defects and isotopic variations. It is assumed that the nanocrystals which have grain boundary with oxygen atoms incorporated into silicon were destroyed in their crystal structure by Si-O dipoles reorientations caused by applied field. The initial crystal orientation was (111). The incorporated oxygen atoms are adsorbed in determined places. Their position results the appearance of numerous dangling bonds which are multiplied by the electric field and create the deep cracks in crystals. The crystal order is damaged along the axis that is perpendicular to (111). It is supposed that the microcrystal is a fractal structure on 2D plane.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Crystalline phase destruction in silicon films by applied external electrical field and detected by using the laser spectroscopy\",\"authors\":\"D. E. Milovzorov\",\"doi\":\"10.1117/12.2208270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied the microcrystalline and nanocrystalline silicon thin films by means of Raman spectroscopy technique. The applied external electric field causes the changes in the electric dipoles’ orientations to compensate the external field, and migration the atom of impurities, such as hydrogen, and point defects. The Si-O dipoles play the most significant role because of electron affinity for oxygen. Phonon eigen-frequencies 480 cm-1 for amorphous silicon Raman spectra around and 520 cm-1 for crystalline TO and LO modes are varied in their energy positions because of wide spread in bonding variation for Si and O atoms, types of dipoles for different point defects and isotopic variations. It is assumed that the nanocrystals which have grain boundary with oxygen atoms incorporated into silicon were destroyed in their crystal structure by Si-O dipoles reorientations caused by applied field. The initial crystal orientation was (111). The incorporated oxygen atoms are adsorbed in determined places. Their position results the appearance of numerous dangling bonds which are multiplied by the electric field and create the deep cracks in crystals. The crystal order is damaged along the axis that is perpendicular to (111). It is supposed that the microcrystal is a fractal structure on 2D plane.\",\"PeriodicalId\":122702,\"journal\":{\"name\":\"SPIE OPTO\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE OPTO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2208270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE OPTO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2208270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用拉曼光谱技术对微晶和纳米晶硅薄膜进行了研究。外加电场使电偶极子的取向发生变化以补偿外加电场,并使杂质原子(如氢)和点缺陷发生迁移。硅氧偶极子由于对氧的电子亲和力而起着最重要的作用。由于Si和O原子的键合变化广泛,不同点缺陷的偶极子类型和同位素变化,非晶硅拉曼光谱的声子本态频率为480 cm-1,晶体TO和LO模式的声子本态频率为520 cm-1,它们的能量位置不同。假设在外加磁场作用下,硅-氧偶极子取向改变破坏了晶界为氧原子的纳米晶体结构。初始晶向为(111)。结合的氧原子被吸附在确定的地方。它们的位置导致了许多悬空键的出现,这些键与电场相乘,在晶体中产生了深裂缝。沿垂直于(111)的轴破坏晶体顺序。假设微晶在二维平面上为分形结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystalline phase destruction in silicon films by applied external electrical field and detected by using the laser spectroscopy
We studied the microcrystalline and nanocrystalline silicon thin films by means of Raman spectroscopy technique. The applied external electric field causes the changes in the electric dipoles’ orientations to compensate the external field, and migration the atom of impurities, such as hydrogen, and point defects. The Si-O dipoles play the most significant role because of electron affinity for oxygen. Phonon eigen-frequencies 480 cm-1 for amorphous silicon Raman spectra around and 520 cm-1 for crystalline TO and LO modes are varied in their energy positions because of wide spread in bonding variation for Si and O atoms, types of dipoles for different point defects and isotopic variations. It is assumed that the nanocrystals which have grain boundary with oxygen atoms incorporated into silicon were destroyed in their crystal structure by Si-O dipoles reorientations caused by applied field. The initial crystal orientation was (111). The incorporated oxygen atoms are adsorbed in determined places. Their position results the appearance of numerous dangling bonds which are multiplied by the electric field and create the deep cracks in crystals. The crystal order is damaged along the axis that is perpendicular to (111). It is supposed that the microcrystal is a fractal structure on 2D plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信