刘维尔有限项积分定理的推广

M. Singer, B. D. Saunders, B. Caviness
{"title":"刘维尔有限项积分定理的推广","authors":"M. Singer, B. D. Saunders, B. Caviness","doi":"10.1137/0214069","DOIUrl":null,"url":null,"abstract":"In this paper we give an extension of the Liouville theorem [RISC69, p. 169] and give a number of examples which show that integration with special functions involves some phenomena that do not occur in integration with the elementary functions alone.\n Our main result generalizes Liouville's theorem by allowing, in addition to the elementary functions, special functions such as the error function, Fresnel integrals and the logarithmic integral to appear in the integral of an elementary function. The basic conclusion is that these functions, if they appear, appear linearly.","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"An extension of Liouville's theorem on integration in finite terms\",\"authors\":\"M. Singer, B. D. Saunders, B. Caviness\",\"doi\":\"10.1137/0214069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give an extension of the Liouville theorem [RISC69, p. 169] and give a number of examples which show that integration with special functions involves some phenomena that do not occur in integration with the elementary functions alone.\\n Our main result generalizes Liouville's theorem by allowing, in addition to the elementary functions, special functions such as the error function, Fresnel integrals and the logarithmic integral to appear in the integral of an elementary function. The basic conclusion is that these functions, if they appear, appear linearly.\",\"PeriodicalId\":314618,\"journal\":{\"name\":\"Symposium on Symbolic and Algebraic Manipulation\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Symbolic and Algebraic Manipulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0214069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0214069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

本文对Liouville定理进行了推广[RISC69, p. 169],并给出了一些例子,证明了与特殊函数积分涉及到一些单独与初等函数积分时不会出现的现象。我们的主要结果通过允许在初等函数的积分中出现误差函数、菲涅耳积分和对数积分等特殊函数来推广刘维尔定理。基本结论是,这些函数,如果出现,是线性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extension of Liouville's theorem on integration in finite terms
In this paper we give an extension of the Liouville theorem [RISC69, p. 169] and give a number of examples which show that integration with special functions involves some phenomena that do not occur in integration with the elementary functions alone. Our main result generalizes Liouville's theorem by allowing, in addition to the elementary functions, special functions such as the error function, Fresnel integrals and the logarithmic integral to appear in the integral of an elementary function. The basic conclusion is that these functions, if they appear, appear linearly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信