选择性多源全变差图像恢复

Stephen Tierney, Yi Guo, Junbin Gao
{"title":"选择性多源全变差图像恢复","authors":"Stephen Tierney, Yi Guo, Junbin Gao","doi":"10.1109/DICTA.2015.7371306","DOIUrl":null,"url":null,"abstract":"This paper is concerned with automatically fusing multiple noisy and partially corrupted source images into a single denoised image. To create the fused image we minimise a convex objective function, which ensures spatial smoothness through total variation regularisation, and similarity to the source images via pixel-wise selective regularisation against each of the source images. We call this approach Selective Multi-Source Total Variation Image Restoration (SMTV). Applications of SMTV include noise removal in low-light conditions, enhancement of images from low quality or damaged imaging sensors and haze or cloud removal from satellite imagery. Experimental evaluation demonstrates that the fusion of multiple images results in a more accurate recovery than single image restoration.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Selective Multi-Source Total Variation Image Restoration\",\"authors\":\"Stephen Tierney, Yi Guo, Junbin Gao\",\"doi\":\"10.1109/DICTA.2015.7371306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with automatically fusing multiple noisy and partially corrupted source images into a single denoised image. To create the fused image we minimise a convex objective function, which ensures spatial smoothness through total variation regularisation, and similarity to the source images via pixel-wise selective regularisation against each of the source images. We call this approach Selective Multi-Source Total Variation Image Restoration (SMTV). Applications of SMTV include noise removal in low-light conditions, enhancement of images from low quality or damaged imaging sensors and haze or cloud removal from satellite imagery. Experimental evaluation demonstrates that the fusion of multiple images results in a more accurate recovery than single image restoration.\",\"PeriodicalId\":214897,\"journal\":{\"name\":\"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2015.7371306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了如何将多幅有噪声和部分损坏的源图像自动融合成一幅去噪图像。为了创建融合图像,我们最小化了一个凸目标函数,通过总变化正则化来确保空间平滑,并通过对每个源图像的逐像素选择性正则化来确保与源图像的相似性。我们将这种方法称为选择性多源全变差图像恢复(SMTV)。SMTV的应用包括在低光条件下去除噪声,从低质量或损坏的成像传感器增强图像,以及从卫星图像中去除雾霾或云。实验结果表明,多幅图像融合复原比单幅图像复原更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selective Multi-Source Total Variation Image Restoration
This paper is concerned with automatically fusing multiple noisy and partially corrupted source images into a single denoised image. To create the fused image we minimise a convex objective function, which ensures spatial smoothness through total variation regularisation, and similarity to the source images via pixel-wise selective regularisation against each of the source images. We call this approach Selective Multi-Source Total Variation Image Restoration (SMTV). Applications of SMTV include noise removal in low-light conditions, enhancement of images from low quality or damaged imaging sensors and haze or cloud removal from satellite imagery. Experimental evaluation demonstrates that the fusion of multiple images results in a more accurate recovery than single image restoration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信