活性污泥模型的多模型预测控制策略

Lamia Matoug, Tarek Khadir
{"title":"活性污泥模型的多模型预测控制策略","authors":"Lamia Matoug, Tarek Khadir","doi":"10.1109/CoDIT.2014.6996945","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of Generalized Predictive Control (GPC) on an Activated Sludge Reactor. The reduced bio-reactor activated sludge ASM1 model, which describes the biological degradation of an activate sludge reactor, is designed based on several simplifications, as a Takagi Sugeno fuzzy model (TS). The TS model structure is based on a set of linear sub models, covering the process input-output space, interpolated by a nonlinear weighting function. In the case of the ASM1 model, as specified in this paper, the linear sub models turn out to be non minimal phase, and therefore the system needs to be decoupled prior to design the control formulation. The classical Multi- Input Multi-Output (MIMO) GPC formulation is then modified to integrate the TS formulation as the controller internal model. The simulation results show the effectiveness of the proposed GPC controller compared to benchmark PID in terms of error and response dynamics.","PeriodicalId":161703,"journal":{"name":"2014 International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-Model Predictive Control strategies for an activated sludge model\",\"authors\":\"Lamia Matoug, Tarek Khadir\",\"doi\":\"10.1109/CoDIT.2014.6996945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the use of Generalized Predictive Control (GPC) on an Activated Sludge Reactor. The reduced bio-reactor activated sludge ASM1 model, which describes the biological degradation of an activate sludge reactor, is designed based on several simplifications, as a Takagi Sugeno fuzzy model (TS). The TS model structure is based on a set of linear sub models, covering the process input-output space, interpolated by a nonlinear weighting function. In the case of the ASM1 model, as specified in this paper, the linear sub models turn out to be non minimal phase, and therefore the system needs to be decoupled prior to design the control formulation. The classical Multi- Input Multi-Output (MIMO) GPC formulation is then modified to integrate the TS formulation as the controller internal model. The simulation results show the effectiveness of the proposed GPC controller compared to benchmark PID in terms of error and response dynamics.\",\"PeriodicalId\":161703,\"journal\":{\"name\":\"2014 International Conference on Control, Decision and Information Technologies (CoDIT)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Control, Decision and Information Technologies (CoDIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoDIT.2014.6996945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT.2014.6996945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了广义预测控制(GPC)在活性污泥反应器中的应用。还原生物反应器活性污泥ASM1模型描述了活性污泥反应器的生物降解,该模型是基于几种简化设计的,即Takagi Sugeno模糊模型(TS)。TS模型结构基于一组覆盖过程输入输出空间的线性子模型,并由非线性加权函数内插。在本文所述的ASM1模型中,线性子模型是非最小相位的,因此需要在设计控制公式之前对系统进行解耦。然后对经典的多输入多输出(MIMO) GPC公式进行修改,将TS公式作为控制器的内部模型。仿真结果表明,与基准PID相比,所提出的GPC控制器在误差和响应动力学方面都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Model Predictive Control strategies for an activated sludge model
This paper investigates the use of Generalized Predictive Control (GPC) on an Activated Sludge Reactor. The reduced bio-reactor activated sludge ASM1 model, which describes the biological degradation of an activate sludge reactor, is designed based on several simplifications, as a Takagi Sugeno fuzzy model (TS). The TS model structure is based on a set of linear sub models, covering the process input-output space, interpolated by a nonlinear weighting function. In the case of the ASM1 model, as specified in this paper, the linear sub models turn out to be non minimal phase, and therefore the system needs to be decoupled prior to design the control formulation. The classical Multi- Input Multi-Output (MIMO) GPC formulation is then modified to integrate the TS formulation as the controller internal model. The simulation results show the effectiveness of the proposed GPC controller compared to benchmark PID in terms of error and response dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信