基于随机空间交互作用的随机场纹理建模新方向

Athanasios Speis, G. Healey
{"title":"基于随机空间交互作用的随机场纹理建模新方向","authors":"Athanasios Speis, G. Healey","doi":"10.1109/PBMCV.1995.514683","DOIUrl":null,"url":null,"abstract":"We propose a new model for textured images of real surfaces. We establish a more general theory than the one of ordinary Conditional Markov Fields that allows the strengths of the spatial interaction to be itself a random varaable. For this class of models, we establish the power spectrum and the autocorrelation function as well defined quantities and we extract new features for texture discrimination and analysis. The new set of features that resulted from this approach was applied to real images. In contrast with the traditional Markov Fields (where samples are required to be 50x50 or larger) accurate discrimination was observed even for boxes of site 16x16.","PeriodicalId":343932,"journal":{"name":"Proceedings of the Workshop on Physics-Based Modeling in Computer Vision","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New directions in texture modeling using random fields with random spatial interaction\",\"authors\":\"Athanasios Speis, G. Healey\",\"doi\":\"10.1109/PBMCV.1995.514683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new model for textured images of real surfaces. We establish a more general theory than the one of ordinary Conditional Markov Fields that allows the strengths of the spatial interaction to be itself a random varaable. For this class of models, we establish the power spectrum and the autocorrelation function as well defined quantities and we extract new features for texture discrimination and analysis. The new set of features that resulted from this approach was applied to real images. In contrast with the traditional Markov Fields (where samples are required to be 50x50 or larger) accurate discrimination was observed even for boxes of site 16x16.\",\"PeriodicalId\":343932,\"journal\":{\"name\":\"Proceedings of the Workshop on Physics-Based Modeling in Computer Vision\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Physics-Based Modeling in Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PBMCV.1995.514683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Physics-Based Modeling in Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PBMCV.1995.514683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种真实表面纹理图像的新模型。我们建立了一个比普通条件马尔可夫场更一般的理论,它允许空间相互作用的强度本身是一个随机变量。对于这类模型,我们建立了功率谱和自相关函数作为定义好的量,并提取新的特征用于纹理识别和分析。这种方法产生的新特征集被应用于真实图像。与传统的马尔可夫场(要求样本尺寸为50x50或更大)相比,即使对于16x16的场地,也可以观察到准确的区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New directions in texture modeling using random fields with random spatial interaction
We propose a new model for textured images of real surfaces. We establish a more general theory than the one of ordinary Conditional Markov Fields that allows the strengths of the spatial interaction to be itself a random varaable. For this class of models, we establish the power spectrum and the autocorrelation function as well defined quantities and we extract new features for texture discrimination and analysis. The new set of features that resulted from this approach was applied to real images. In contrast with the traditional Markov Fields (where samples are required to be 50x50 or larger) accurate discrimination was observed even for boxes of site 16x16.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信