雅可比方程与多共轭点流形

J. Burns, Eoghan J. Staunton, D. Wraith
{"title":"雅可比方程与多共轭点流形","authors":"J. Burns, Eoghan J. Staunton, D. Wraith","doi":"10.3318/PRIA.2013.113.03","DOIUrl":null,"url":null,"abstract":"We investigate the phenomenon of multiple conjugate points along \na geodesic. In the first instance, we investigate conjugate points in the context \nof the Jacobi equation, a second order ordinary differential equation, which captures precisely the geometry of conjugate points on surfaces. We then construct \ngeometric examples which exhibit similar properties in higher dimensions.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON THE JACOBI EQUATION AND MANIFOLDS WITH MULTIPLE CONJUGATE POINTS\",\"authors\":\"J. Burns, Eoghan J. Staunton, D. Wraith\",\"doi\":\"10.3318/PRIA.2013.113.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the phenomenon of multiple conjugate points along \\na geodesic. In the first instance, we investigate conjugate points in the context \\nof the Jacobi equation, a second order ordinary differential equation, which captures precisely the geometry of conjugate points on surfaces. We then construct \\ngeometric examples which exhibit similar properties in higher dimensions.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/PRIA.2013.113.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2013.113.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了沿测地线的多个共轭点的现象。在第一个例子中,我们在雅可比方程的背景下研究共轭点,雅可比方程是一个二阶常微分方程,它精确地捕获了曲面上共轭点的几何形状。然后我们构造几何例子,在高维中表现出类似的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE JACOBI EQUATION AND MANIFOLDS WITH MULTIPLE CONJUGATE POINTS
We investigate the phenomenon of multiple conjugate points along a geodesic. In the first instance, we investigate conjugate points in the context of the Jacobi equation, a second order ordinary differential equation, which captures precisely the geometry of conjugate points on surfaces. We then construct geometric examples which exhibit similar properties in higher dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信