{"title":"基于物联网的低成本节能智能过载跳闸电能表识别与通知系统设计","authors":"Boniface Ntambara, Ritha Umuhoza","doi":"10.1109/SPEC52827.2021.9709465","DOIUrl":null,"url":null,"abstract":"Electricity overload endures an enormous loss experienced by electricity utility companies. These drawbacks arise because of actions carried out by most consumers such as metering systems overconsumption, industrial and distribution transformer overloads. Conventionally, the load management systems were proposed to tackle the problems by notifying the utility companies about the consumer load status but these systems are high energy consumption, high cost, and unable to provide the consumer location and accurate information. This paper develops the intelligent system for handling the issues by designing a three-phase smart energy meter perceptively based on Global System for Mobile Communications (GSM) and Global Positioning System (GPS) technologies interfaced by Arduino UNO. This microcontroller measures the three phase’s current and voltage and from these readings, powers were determined. Each phase, the predefined values of load were set, and whenever this threshold load values were exceeded, the consumer and utility got a message from GSM texted: “Dear Consumer, System is overloaded, Please manage it and RESET.”, otherwise the system was disconnected from the supply and GPS module was connected to the microcontroller to provide the location of the consumer. The results indicated that the system accurately has detected and reported the overload condition by tripping the energy meter and localizing the consumer. The IoT with AI technologies can be considered for future works.","PeriodicalId":236251,"journal":{"name":"2021 IEEE Southern Power Electronics Conference (SPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of Low Cost and Energy Efficient Smart Energy Meter of Overload Tripping with Recognition and Notification Systems based on Internet of Things\",\"authors\":\"Boniface Ntambara, Ritha Umuhoza\",\"doi\":\"10.1109/SPEC52827.2021.9709465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity overload endures an enormous loss experienced by electricity utility companies. These drawbacks arise because of actions carried out by most consumers such as metering systems overconsumption, industrial and distribution transformer overloads. Conventionally, the load management systems were proposed to tackle the problems by notifying the utility companies about the consumer load status but these systems are high energy consumption, high cost, and unable to provide the consumer location and accurate information. This paper develops the intelligent system for handling the issues by designing a three-phase smart energy meter perceptively based on Global System for Mobile Communications (GSM) and Global Positioning System (GPS) technologies interfaced by Arduino UNO. This microcontroller measures the three phase’s current and voltage and from these readings, powers were determined. Each phase, the predefined values of load were set, and whenever this threshold load values were exceeded, the consumer and utility got a message from GSM texted: “Dear Consumer, System is overloaded, Please manage it and RESET.”, otherwise the system was disconnected from the supply and GPS module was connected to the microcontroller to provide the location of the consumer. The results indicated that the system accurately has detected and reported the overload condition by tripping the energy meter and localizing the consumer. The IoT with AI technologies can be considered for future works.\",\"PeriodicalId\":236251,\"journal\":{\"name\":\"2021 IEEE Southern Power Electronics Conference (SPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC52827.2021.9709465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC52827.2021.9709465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of Low Cost and Energy Efficient Smart Energy Meter of Overload Tripping with Recognition and Notification Systems based on Internet of Things
Electricity overload endures an enormous loss experienced by electricity utility companies. These drawbacks arise because of actions carried out by most consumers such as metering systems overconsumption, industrial and distribution transformer overloads. Conventionally, the load management systems were proposed to tackle the problems by notifying the utility companies about the consumer load status but these systems are high energy consumption, high cost, and unable to provide the consumer location and accurate information. This paper develops the intelligent system for handling the issues by designing a three-phase smart energy meter perceptively based on Global System for Mobile Communications (GSM) and Global Positioning System (GPS) technologies interfaced by Arduino UNO. This microcontroller measures the three phase’s current and voltage and from these readings, powers were determined. Each phase, the predefined values of load were set, and whenever this threshold load values were exceeded, the consumer and utility got a message from GSM texted: “Dear Consumer, System is overloaded, Please manage it and RESET.”, otherwise the system was disconnected from the supply and GPS module was connected to the microcontroller to provide the location of the consumer. The results indicated that the system accurately has detected and reported the overload condition by tripping the energy meter and localizing the consumer. The IoT with AI technologies can be considered for future works.