代数,相干态,广义埃尔米特多项式,以及分数统计的路径积分——从费米子到玻色子的插值

S. Ramakrishna
{"title":"代数,相干态,广义埃尔米特多项式,以及分数统计的路径积分——从费米子到玻色子的插值","authors":"S. Ramakrishna","doi":"10.1063/5.0022407","DOIUrl":null,"url":null,"abstract":"This article develops the algebraic structure that results from the $\\theta$-commutator $\\alpha \\beta - e^{i \\theta} \\beta \\alpha = 1 $ that provides a continuous interpolation between the Clifford and Heisenberg algebras. We first demonstrate the most general geometrical picture, applicable to all values of $N$. After listing the properties of this Hilbert space, we study the generalized coherent states that result when $\\xi^N=0$, for $N \\ge 2$. We also solve the generalized harmonic oscillator problem and derive generalized versions of the Hermite polynomials for general $N$. Some remarks are made to connect this study to the case of anyons. This study represents the first steps towards developing an anyonic field theory.","PeriodicalId":369778,"journal":{"name":"arXiv: General Physics","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebra, coherent states, generalized Hermite polynomials, and path integrals for fractional statistics—Interpolating from fermions to bosons\",\"authors\":\"S. Ramakrishna\",\"doi\":\"10.1063/5.0022407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article develops the algebraic structure that results from the $\\\\theta$-commutator $\\\\alpha \\\\beta - e^{i \\\\theta} \\\\beta \\\\alpha = 1 $ that provides a continuous interpolation between the Clifford and Heisenberg algebras. We first demonstrate the most general geometrical picture, applicable to all values of $N$. After listing the properties of this Hilbert space, we study the generalized coherent states that result when $\\\\xi^N=0$, for $N \\\\ge 2$. We also solve the generalized harmonic oscillator problem and derive generalized versions of the Hermite polynomials for general $N$. Some remarks are made to connect this study to the case of anyons. This study represents the first steps towards developing an anyonic field theory.\",\"PeriodicalId\":369778,\"journal\":{\"name\":\"arXiv: General Physics\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: General Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0022407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0022407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文发展了由$\theta$ -换向子$\alpha \beta - e^{i \theta} \beta \alpha = 1 $得到的代数结构,它提供了Clifford代数和Heisenberg代数之间的连续插值。我们首先展示最一般的几何图形,适用于$N$的所有值。在列出这个希尔伯特空间的性质之后,我们研究了当$\xi^N=0$时产生的广义相干态,对于$N \ge 2$。我们还解决了广义谐振子问题,并推导了广义$N$的Hermite多项式的广义形式。有些评论是为了把这项研究与任何人的情况联系起来。这项研究代表了发展任意子场论的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebra, coherent states, generalized Hermite polynomials, and path integrals for fractional statistics—Interpolating from fermions to bosons
This article develops the algebraic structure that results from the $\theta$-commutator $\alpha \beta - e^{i \theta} \beta \alpha = 1 $ that provides a continuous interpolation between the Clifford and Heisenberg algebras. We first demonstrate the most general geometrical picture, applicable to all values of $N$. After listing the properties of this Hilbert space, we study the generalized coherent states that result when $\xi^N=0$, for $N \ge 2$. We also solve the generalized harmonic oscillator problem and derive generalized versions of the Hermite polynomials for general $N$. Some remarks are made to connect this study to the case of anyons. This study represents the first steps towards developing an anyonic field theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信