{"title":"汤普森群的规范化可服从子群","authors":"C. Bleak","doi":"10.1142/s0129054121420089","DOIUrl":null,"url":null,"abstract":"Results in [Formula: see text] algebras, of Matte Bon and Le Boudec, and of Haagerup and Olesen, apply to the R. Thompson groups [Formula: see text]. These results together show that [Formula: see text] is non-amenable if and only if [Formula: see text] has a simple reduced [Formula: see text]-algebra. In further investigations into the structure of [Formula: see text]-algebras, Breuillard, Kalantar, Kennedy, and Ozawa introduce the notion of a normalish subgroup of a group [Formula: see text]. They show that if a group [Formula: see text] admits no non-trivial finite normal subgroups and no normalish amenable subgroups then it has a simple reduced [Formula: see text]-algebra. Our chief result concerns the R. Thompson groups [Formula: see text]; we show that there is an elementary amenable group [Formula: see text] [where here, [Formula: see text]] with [Formula: see text] normalish in [Formula: see text]. The proof given uses a natural partial action of the group [Formula: see text] on a regular language determined by a synchronising automaton in order to verify a certain stability condition: once again highlighting the existence of interesting intersections of the theory of [Formula: see text] with various forms of formal language theory.","PeriodicalId":192109,"journal":{"name":"Int. J. Found. Comput. Sci.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Normalish Amenable Subgroups of the R. Thompson Groups\",\"authors\":\"C. Bleak\",\"doi\":\"10.1142/s0129054121420089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results in [Formula: see text] algebras, of Matte Bon and Le Boudec, and of Haagerup and Olesen, apply to the R. Thompson groups [Formula: see text]. These results together show that [Formula: see text] is non-amenable if and only if [Formula: see text] has a simple reduced [Formula: see text]-algebra. In further investigations into the structure of [Formula: see text]-algebras, Breuillard, Kalantar, Kennedy, and Ozawa introduce the notion of a normalish subgroup of a group [Formula: see text]. They show that if a group [Formula: see text] admits no non-trivial finite normal subgroups and no normalish amenable subgroups then it has a simple reduced [Formula: see text]-algebra. Our chief result concerns the R. Thompson groups [Formula: see text]; we show that there is an elementary amenable group [Formula: see text] [where here, [Formula: see text]] with [Formula: see text] normalish in [Formula: see text]. The proof given uses a natural partial action of the group [Formula: see text] on a regular language determined by a synchronising automaton in order to verify a certain stability condition: once again highlighting the existence of interesting intersections of the theory of [Formula: see text] with various forms of formal language theory.\",\"PeriodicalId\":192109,\"journal\":{\"name\":\"Int. J. Found. Comput. Sci.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Found. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054121420089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Found. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129054121420089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Normalish Amenable Subgroups of the R. Thompson Groups
Results in [Formula: see text] algebras, of Matte Bon and Le Boudec, and of Haagerup and Olesen, apply to the R. Thompson groups [Formula: see text]. These results together show that [Formula: see text] is non-amenable if and only if [Formula: see text] has a simple reduced [Formula: see text]-algebra. In further investigations into the structure of [Formula: see text]-algebras, Breuillard, Kalantar, Kennedy, and Ozawa introduce the notion of a normalish subgroup of a group [Formula: see text]. They show that if a group [Formula: see text] admits no non-trivial finite normal subgroups and no normalish amenable subgroups then it has a simple reduced [Formula: see text]-algebra. Our chief result concerns the R. Thompson groups [Formula: see text]; we show that there is an elementary amenable group [Formula: see text] [where here, [Formula: see text]] with [Formula: see text] normalish in [Formula: see text]. The proof given uses a natural partial action of the group [Formula: see text] on a regular language determined by a synchronising automaton in order to verify a certain stability condition: once again highlighting the existence of interesting intersections of the theory of [Formula: see text] with various forms of formal language theory.