汤普森群的规范化可服从子群

C. Bleak
{"title":"汤普森群的规范化可服从子群","authors":"C. Bleak","doi":"10.1142/s0129054121420089","DOIUrl":null,"url":null,"abstract":"Results in [Formula: see text] algebras, of Matte Bon and Le Boudec, and of Haagerup and Olesen, apply to the R. Thompson groups [Formula: see text]. These results together show that [Formula: see text] is non-amenable if and only if [Formula: see text] has a simple reduced [Formula: see text]-algebra. In further investigations into the structure of [Formula: see text]-algebras, Breuillard, Kalantar, Kennedy, and Ozawa introduce the notion of a normalish subgroup of a group [Formula: see text]. They show that if a group [Formula: see text] admits no non-trivial finite normal subgroups and no normalish amenable subgroups then it has a simple reduced [Formula: see text]-algebra. Our chief result concerns the R. Thompson groups [Formula: see text]; we show that there is an elementary amenable group [Formula: see text] [where here, [Formula: see text]] with [Formula: see text] normalish in [Formula: see text]. The proof given uses a natural partial action of the group [Formula: see text] on a regular language determined by a synchronising automaton in order to verify a certain stability condition: once again highlighting the existence of interesting intersections of the theory of [Formula: see text] with various forms of formal language theory.","PeriodicalId":192109,"journal":{"name":"Int. J. Found. Comput. Sci.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Normalish Amenable Subgroups of the R. Thompson Groups\",\"authors\":\"C. Bleak\",\"doi\":\"10.1142/s0129054121420089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results in [Formula: see text] algebras, of Matte Bon and Le Boudec, and of Haagerup and Olesen, apply to the R. Thompson groups [Formula: see text]. These results together show that [Formula: see text] is non-amenable if and only if [Formula: see text] has a simple reduced [Formula: see text]-algebra. In further investigations into the structure of [Formula: see text]-algebras, Breuillard, Kalantar, Kennedy, and Ozawa introduce the notion of a normalish subgroup of a group [Formula: see text]. They show that if a group [Formula: see text] admits no non-trivial finite normal subgroups and no normalish amenable subgroups then it has a simple reduced [Formula: see text]-algebra. Our chief result concerns the R. Thompson groups [Formula: see text]; we show that there is an elementary amenable group [Formula: see text] [where here, [Formula: see text]] with [Formula: see text] normalish in [Formula: see text]. The proof given uses a natural partial action of the group [Formula: see text] on a regular language determined by a synchronising automaton in order to verify a certain stability condition: once again highlighting the existence of interesting intersections of the theory of [Formula: see text] with various forms of formal language theory.\",\"PeriodicalId\":192109,\"journal\":{\"name\":\"Int. J. Found. Comput. Sci.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Found. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054121420089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Found. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129054121420089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Matte Bon和Le Boudec以及Haagerup和Olesen代数中的结果适用于R. Thompson群[公式:见文本]。这些结果共同表明,当且仅当[公式:见文]具有简单简化的[公式:见文]-代数时,[公式:见文]是不可接受的。在对代数结构的进一步研究中,Breuillard, Kalantar, Kennedy和Ozawa引入了群的正规子群的概念[公式:见文本]。他们证明,如果一个群[公式:见文]不存在非平凡有限正规子群,也不存在正则化可服从的子群,那么它就有一个简单的简化[公式:见文]-代数。我们的主要结果与R. Thompson组有关[公式:见文本];我们证明存在一个基本可服从群[公式:见文][在这里,[公式:见文]]与[公式:见文]中的[公式:见文]正态化。给出的证明使用了群[公式:见文]在由同步自动机决定的规则语言上的自然部分作用,以验证一定的稳定性条件:再次突出了[公式:见文]理论与各种形式语言理论的有趣交集的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalish Amenable Subgroups of the R. Thompson Groups
Results in [Formula: see text] algebras, of Matte Bon and Le Boudec, and of Haagerup and Olesen, apply to the R. Thompson groups [Formula: see text]. These results together show that [Formula: see text] is non-amenable if and only if [Formula: see text] has a simple reduced [Formula: see text]-algebra. In further investigations into the structure of [Formula: see text]-algebras, Breuillard, Kalantar, Kennedy, and Ozawa introduce the notion of a normalish subgroup of a group [Formula: see text]. They show that if a group [Formula: see text] admits no non-trivial finite normal subgroups and no normalish amenable subgroups then it has a simple reduced [Formula: see text]-algebra. Our chief result concerns the R. Thompson groups [Formula: see text]; we show that there is an elementary amenable group [Formula: see text] [where here, [Formula: see text]] with [Formula: see text] normalish in [Formula: see text]. The proof given uses a natural partial action of the group [Formula: see text] on a regular language determined by a synchronising automaton in order to verify a certain stability condition: once again highlighting the existence of interesting intersections of the theory of [Formula: see text] with various forms of formal language theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信