量子自动机和随机存取码的最优下界

A. Nayak
{"title":"量子自动机和随机存取码的最优下界","authors":"A. Nayak","doi":"10.1109/SFFCS.1999.814608","DOIUrl":null,"url":null,"abstract":"Consider the finite regular language L/sub n/={w0|w/spl isin/{0,1}*,|w|/spl les/n}. A. Ambainis et al. (1999) showed that while this language is accepted by a deterministic finite automaton of size O(n), any one-way quantum finite automaton (QFA) for it has size 2/sup /spl Omega/(n/logn)/. This was based on the fact that the evolution of a QFA is required to be reversible. When arbitrary intermediate measurements are allowed, this intuition breaks down. Nonetheless, we show a 2/sup /spl Omega/(n)/ lower bound for such QFA for L/sub n/, thus also improving the previous bound. The improved bound is obtained from simple entropy arguments based on A.S. Holevo's (1973) theorem. This method also allows us to obtain an asymptotically optimal (1-H(p))n bound for the dense quantum codes (random access codes) introduced by A. Ambainis et al. We then turn to Holevo's theorem, and show that in typical situations, it may be replaced by a tighter and more transparent in-probability bound.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"294","resultStr":"{\"title\":\"Optimal lower bounds for quantum automata and random access codes\",\"authors\":\"A. Nayak\",\"doi\":\"10.1109/SFFCS.1999.814608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the finite regular language L/sub n/={w0|w/spl isin/{0,1}*,|w|/spl les/n}. A. Ambainis et al. (1999) showed that while this language is accepted by a deterministic finite automaton of size O(n), any one-way quantum finite automaton (QFA) for it has size 2/sup /spl Omega/(n/logn)/. This was based on the fact that the evolution of a QFA is required to be reversible. When arbitrary intermediate measurements are allowed, this intuition breaks down. Nonetheless, we show a 2/sup /spl Omega/(n)/ lower bound for such QFA for L/sub n/, thus also improving the previous bound. The improved bound is obtained from simple entropy arguments based on A.S. Holevo's (1973) theorem. This method also allows us to obtain an asymptotically optimal (1-H(p))n bound for the dense quantum codes (random access codes) introduced by A. Ambainis et al. We then turn to Holevo's theorem, and show that in typical situations, it may be replaced by a tighter and more transparent in-probability bound.\",\"PeriodicalId\":385047,\"journal\":{\"name\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"294\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFFCS.1999.814608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 294

摘要

考虑有限正则语言L/sub n/={w0|w/spl isin/{0,1}*,|w|/spl les/n}。a . Ambainis等人(1999)表明,虽然这种语言被大小为O(n)的确定性有限自动机所接受,但任何单向量子有限自动机(QFA)的大小为2/sup /spl Omega/(n/logn)/。这是基于这样一个事实,即QFA的演变需要是可逆的。当允许任意的中间测量时,这种直觉就失效了。尽管如此,我们为L/sub / n/的QFA给出了2/sup /spl Omega/(n)/下界,从而也改进了之前的下界。改进界是根据Holevo(1973)定理从简单熵参数得到的。该方法还允许我们获得A. Ambainis等人引入的密集量子码(随机接入码)的渐近最优(1-H(p))n界。然后我们转向Holevo定理,并表明在典型情况下,它可以被更紧密和更透明的概率内界所取代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal lower bounds for quantum automata and random access codes
Consider the finite regular language L/sub n/={w0|w/spl isin/{0,1}*,|w|/spl les/n}. A. Ambainis et al. (1999) showed that while this language is accepted by a deterministic finite automaton of size O(n), any one-way quantum finite automaton (QFA) for it has size 2/sup /spl Omega/(n/logn)/. This was based on the fact that the evolution of a QFA is required to be reversible. When arbitrary intermediate measurements are allowed, this intuition breaks down. Nonetheless, we show a 2/sup /spl Omega/(n)/ lower bound for such QFA for L/sub n/, thus also improving the previous bound. The improved bound is obtained from simple entropy arguments based on A.S. Holevo's (1973) theorem. This method also allows us to obtain an asymptotically optimal (1-H(p))n bound for the dense quantum codes (random access codes) introduced by A. Ambainis et al. We then turn to Holevo's theorem, and show that in typical situations, it may be replaced by a tighter and more transparent in-probability bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信