硅取代羟基磷灰石的新图型

G. Munir, Xiang Li, M. Edirisinghe, W. Bonfield, M. Esat, J. Huang
{"title":"硅取代羟基磷灰石的新图型","authors":"G. Munir, Xiang Li, M. Edirisinghe, W. Bonfield, M. Esat, J. Huang","doi":"10.4303/BDA/D101109","DOIUrl":null,"url":null,"abstract":"Template-assisted electrohydrodynamic atomisation (TAEA) spraying of nanometer-sized siliconsubstituted hydroxyapatite (nanoSiHA) was used to pattern implant surfaces for guided cell growth to improve the repair and regeneration of medical implants. A suspension of nanoSiHA was prepared and characterized. Patterns of pillars and tracks of various dimensions were prepared using the suspension. It was found that the resolution of the pattern was affected by TAEA processing parameters, such as applied voltage, flow rate, distance between needle and substrate, and spray time. Fifteen minutes spraying time provided the most clear and uniform patterned topography with a distance between nozzle and substrate of 50mm and a flow rate of 4?l/min. Therefore, well-defined nanoSiHA patterns can be achieved by TAEA deposition, it thus offers great potential for patterning the surface of medical implants.","PeriodicalId":127691,"journal":{"name":"Bioceramics Development and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel Patterning of Silicon-Substituted Hydroxyapatite\",\"authors\":\"G. Munir, Xiang Li, M. Edirisinghe, W. Bonfield, M. Esat, J. Huang\",\"doi\":\"10.4303/BDA/D101109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Template-assisted electrohydrodynamic atomisation (TAEA) spraying of nanometer-sized siliconsubstituted hydroxyapatite (nanoSiHA) was used to pattern implant surfaces for guided cell growth to improve the repair and regeneration of medical implants. A suspension of nanoSiHA was prepared and characterized. Patterns of pillars and tracks of various dimensions were prepared using the suspension. It was found that the resolution of the pattern was affected by TAEA processing parameters, such as applied voltage, flow rate, distance between needle and substrate, and spray time. Fifteen minutes spraying time provided the most clear and uniform patterned topography with a distance between nozzle and substrate of 50mm and a flow rate of 4?l/min. Therefore, well-defined nanoSiHA patterns can be achieved by TAEA deposition, it thus offers great potential for patterning the surface of medical implants.\",\"PeriodicalId\":127691,\"journal\":{\"name\":\"Bioceramics Development and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioceramics Development and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4303/BDA/D101109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioceramics Development and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4303/BDA/D101109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用模板辅助电流体动力学雾化(TAEA)喷涂纳米硅取代羟基磷灰石(nanoSiHA),对植入物表面进行图案化,引导细胞生长,以改善医疗植入物的修复和再生。制备了纳米siha悬浮液并对其进行了表征。利用悬架制备了各种尺寸的柱子和轨道图案。结果表明,TAEA工艺参数(如施加电压、流量、针与衬底之间的距离和喷涂时间)对图案的分辨率有影响。喷射时间为15分钟,喷嘴与基材之间的距离为50mm,流速为4.1 l/min,可获得最清晰、均匀的图案形貌。因此,通过TAEA沉积可以获得定义良好的纳米siha模式,因此它为医疗植入物表面的模式提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Patterning of Silicon-Substituted Hydroxyapatite
Template-assisted electrohydrodynamic atomisation (TAEA) spraying of nanometer-sized siliconsubstituted hydroxyapatite (nanoSiHA) was used to pattern implant surfaces for guided cell growth to improve the repair and regeneration of medical implants. A suspension of nanoSiHA was prepared and characterized. Patterns of pillars and tracks of various dimensions were prepared using the suspension. It was found that the resolution of the pattern was affected by TAEA processing parameters, such as applied voltage, flow rate, distance between needle and substrate, and spray time. Fifteen minutes spraying time provided the most clear and uniform patterned topography with a distance between nozzle and substrate of 50mm and a flow rate of 4?l/min. Therefore, well-defined nanoSiHA patterns can be achieved by TAEA deposition, it thus offers great potential for patterning the surface of medical implants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信