基于轮廓、步态和RGB的多模态人体身份验证

Yuxiang Guo, Cheng Peng, Chun Pong Lau, R. Chellappa
{"title":"基于轮廓、步态和RGB的多模态人体身份验证","authors":"Yuxiang Guo, Cheng Peng, Chun Pong Lau, R. Chellappa","doi":"10.1109/FG57933.2023.10042572","DOIUrl":null,"url":null,"abstract":"Whole-body-based human authentication is a promising approach for remote biometrics scenarios. Current literature focuses on either body recognition based on RGB images or gait recognition based on body shapes and walking patterns; both have their advantages and drawbacks. In this work, we propose Dual-Modal Ensemble (DME), which combines both RGB and silhouette data to achieve more robust performances for indoor and outdoor whole-body based recognition. Within DME, we propose GaitPattern, which is inspired by the double helical gait pattern used in traditional gait analysis. The GaitPattern contributes to robust identification performance over a large range of viewing angles. Extensive experimental results on the CASIA-B dataset demonstrate that the proposed method outperforms state-of-the-art recognition systems. We also provide experimental results using the newly collected BRIAR dataset.","PeriodicalId":318766,"journal":{"name":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multi-Modal Human Authentication Using Silhouettes, Gait and RGB\",\"authors\":\"Yuxiang Guo, Cheng Peng, Chun Pong Lau, R. Chellappa\",\"doi\":\"10.1109/FG57933.2023.10042572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whole-body-based human authentication is a promising approach for remote biometrics scenarios. Current literature focuses on either body recognition based on RGB images or gait recognition based on body shapes and walking patterns; both have their advantages and drawbacks. In this work, we propose Dual-Modal Ensemble (DME), which combines both RGB and silhouette data to achieve more robust performances for indoor and outdoor whole-body based recognition. Within DME, we propose GaitPattern, which is inspired by the double helical gait pattern used in traditional gait analysis. The GaitPattern contributes to robust identification performance over a large range of viewing angles. Extensive experimental results on the CASIA-B dataset demonstrate that the proposed method outperforms state-of-the-art recognition systems. We also provide experimental results using the newly collected BRIAR dataset.\",\"PeriodicalId\":318766,\"journal\":{\"name\":\"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FG57933.2023.10042572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FG57933.2023.10042572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

基于全身的人体认证是一种很有前途的远程生物识别方案。目前的文献主要集中在基于RGB图像的身体识别或基于身体形状和行走模式的步态识别;两者都有其优点和缺点。在这项工作中,我们提出了双模态集成(DME),它结合了RGB和轮廓数据,以实现更强大的室内和室外基于全身的识别性能。在DME中,我们受到传统步态分析中使用的双螺旋步态模式的启发,提出了GaitPattern。步态模式有助于在大视角范围内实现稳健的识别性能。在CASIA-B数据集上的大量实验结果表明,所提出的方法优于最先进的识别系统。我们还提供了使用新收集的BRIAR数据集的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Modal Human Authentication Using Silhouettes, Gait and RGB
Whole-body-based human authentication is a promising approach for remote biometrics scenarios. Current literature focuses on either body recognition based on RGB images or gait recognition based on body shapes and walking patterns; both have their advantages and drawbacks. In this work, we propose Dual-Modal Ensemble (DME), which combines both RGB and silhouette data to achieve more robust performances for indoor and outdoor whole-body based recognition. Within DME, we propose GaitPattern, which is inspired by the double helical gait pattern used in traditional gait analysis. The GaitPattern contributes to robust identification performance over a large range of viewing angles. Extensive experimental results on the CASIA-B dataset demonstrate that the proposed method outperforms state-of-the-art recognition systems. We also provide experimental results using the newly collected BRIAR dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信