支持向量机与人工神经网络在肝炎疾病诊断中的应用

M. Rouhani, M. M. Haghighi
{"title":"支持向量机与人工神经网络在肝炎疾病诊断中的应用","authors":"M. Rouhani, M. M. Haghighi","doi":"10.1109/IACSIT-SC.2009.25","DOIUrl":null,"url":null,"abstract":"in this paper, we use Support Vector Machine (SVM) and artificial neural networks to diagnosis Hepatitis diseases. Furthermore, we use those networks to identify the type and the phase of disease. Considering the most important hepatitis cases leads us to six classes: hepatitis B (two phases), hepatitis C (two phases), non-viral hepatitis and no-hepatitis. For this purpose, we design various networks including RBF, GRNN, PNN, LVQ and SVM. The performance of each of them has studied and the best method is selected for each of classification tasks. The overall accuracy of diagnosis system is near 97%.","PeriodicalId":286158,"journal":{"name":"2009 International Association of Computer Science and Information Technology - Spring Conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"The Diagnosis of Hepatitis Diseases by Support Vector Machines and Artificial Neural Networks\",\"authors\":\"M. Rouhani, M. M. Haghighi\",\"doi\":\"10.1109/IACSIT-SC.2009.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"in this paper, we use Support Vector Machine (SVM) and artificial neural networks to diagnosis Hepatitis diseases. Furthermore, we use those networks to identify the type and the phase of disease. Considering the most important hepatitis cases leads us to six classes: hepatitis B (two phases), hepatitis C (two phases), non-viral hepatitis and no-hepatitis. For this purpose, we design various networks including RBF, GRNN, PNN, LVQ and SVM. The performance of each of them has studied and the best method is selected for each of classification tasks. The overall accuracy of diagnosis system is near 97%.\",\"PeriodicalId\":286158,\"journal\":{\"name\":\"2009 International Association of Computer Science and Information Technology - Spring Conference\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Association of Computer Science and Information Technology - Spring Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IACSIT-SC.2009.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Association of Computer Science and Information Technology - Spring Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACSIT-SC.2009.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文采用支持向量机(SVM)和人工神经网络对肝炎疾病进行诊断。此外,我们使用这些网络来识别疾病的类型和阶段。考虑到最重要的肝炎病例,我们将其分为六类:乙型肝炎(两期),丙型肝炎(两期),非病毒性肝炎和非肝炎。为此,我们设计了各种网络,包括RBF、GRNN、PNN、LVQ和SVM。对每种方法的性能进行了研究,并为每个分类任务选择了最佳方法。诊断系统的总体准确率接近97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Diagnosis of Hepatitis Diseases by Support Vector Machines and Artificial Neural Networks
in this paper, we use Support Vector Machine (SVM) and artificial neural networks to diagnosis Hepatitis diseases. Furthermore, we use those networks to identify the type and the phase of disease. Considering the most important hepatitis cases leads us to six classes: hepatitis B (two phases), hepatitis C (two phases), non-viral hepatitis and no-hepatitis. For this purpose, we design various networks including RBF, GRNN, PNN, LVQ and SVM. The performance of each of them has studied and the best method is selected for each of classification tasks. The overall accuracy of diagnosis system is near 97%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信