使用非参数方法合成语音持续时间的基于中位数的生成

S. Ronanki, O. Watts, Simon King, G. Henter
{"title":"使用非参数方法合成语音持续时间的基于中位数的生成","authors":"S. Ronanki, O. Watts, Simon King, G. Henter","doi":"10.1109/SLT.2016.7846337","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach to duration modelling for statistical parametric speech synthesis in which a recurrent statistical model is trained to output a phone transition probability at each timestep (acoustic frame). Unlike conventional approaches to duration modelling - which assume that duration distributions have a particular form (e.g., a Gaussian) and use the mean of that distribution for synthesis - our approach can in principle model any distribution supported on the non-negative integers. Generation from this model can be performed in many ways; here we consider output generation based on the median predicted duration. The median is more typical (more probable) than the conventional mean duration, is robust to training-data irregularities, and enables incremental generation. Furthermore, a frame-level approach to duration prediction is consistent with a longer-term goal of modelling durations and acoustic features together. Results indicate that the proposed method is competitive with baseline approaches in approximating the median duration of held-out natural speech.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Median-based generation of synthetic speech durations using a non-parametric approach\",\"authors\":\"S. Ronanki, O. Watts, Simon King, G. Henter\",\"doi\":\"10.1109/SLT.2016.7846337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new approach to duration modelling for statistical parametric speech synthesis in which a recurrent statistical model is trained to output a phone transition probability at each timestep (acoustic frame). Unlike conventional approaches to duration modelling - which assume that duration distributions have a particular form (e.g., a Gaussian) and use the mean of that distribution for synthesis - our approach can in principle model any distribution supported on the non-negative integers. Generation from this model can be performed in many ways; here we consider output generation based on the median predicted duration. The median is more typical (more probable) than the conventional mean duration, is robust to training-data irregularities, and enables incremental generation. Furthermore, a frame-level approach to duration prediction is consistent with a longer-term goal of modelling durations and acoustic features together. Results indicate that the proposed method is competitive with baseline approaches in approximating the median duration of held-out natural speech.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种用于统计参数语音合成的持续时间建模的新方法,其中训练一个循环统计模型以输出每个时间步长(声学帧)的电话转移概率。与传统的持续时间建模方法(假设持续时间分布具有特定形式(例如,高斯分布)并使用该分布的平均值进行合成)不同,我们的方法原则上可以对非负整数支持的任何分布进行建模。该模型的生成可以通过多种方式进行;这里我们考虑基于中值预测持续时间的输出生成。中位数比传统的平均持续时间更典型(更可能),对训练数据不规则性具有鲁棒性,并支持增量生成。此外,持续时间预测的帧级方法与持续时间和声学特征建模的长期目标是一致的。结果表明,所提出的方法在近似自然语音的中位数持续时间方面与基线方法具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Median-based generation of synthetic speech durations using a non-parametric approach
This paper proposes a new approach to duration modelling for statistical parametric speech synthesis in which a recurrent statistical model is trained to output a phone transition probability at each timestep (acoustic frame). Unlike conventional approaches to duration modelling - which assume that duration distributions have a particular form (e.g., a Gaussian) and use the mean of that distribution for synthesis - our approach can in principle model any distribution supported on the non-negative integers. Generation from this model can be performed in many ways; here we consider output generation based on the median predicted duration. The median is more typical (more probable) than the conventional mean duration, is robust to training-data irregularities, and enables incremental generation. Furthermore, a frame-level approach to duration prediction is consistent with a longer-term goal of modelling durations and acoustic features together. Results indicate that the proposed method is competitive with baseline approaches in approximating the median duration of held-out natural speech.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信