Yumin Chen, Yan Xu, Zhengmao Li, X. Feng, Hongming Yang, L. C. Pereira da Silva, Ashu Verma
{"title":"热电联网的两阶段随机运行方法","authors":"Yumin Chen, Yan Xu, Zhengmao Li, X. Feng, Hongming Yang, L. C. Pereira da Silva, Ashu Verma","doi":"10.1109/ISGT-Asia.2019.8881188","DOIUrl":null,"url":null,"abstract":"In a multi-energy microgrid (MEMG), various energies like heat and electricity are integrated at the system level to increase the overall energy utilization efficiency. Nevertheless, the intermittency and randomness of renewable energy resources pose significant challenges to the operation of microgrids, especially for MEMGs. To overcome the difficulties, we present a two-stage stochastic operation method to optimally schedule the units in MEMG under varied uncertainties from renewable energy resources, electricity price and loads. In the proposed method, the energy storage tanks and on/off statuses of generators are dispatched in advance; in the second stage, the output power of generation units and auxiliary units will be optimized to act as a supplement. We formulate the problem as a two-stage mixed-integer linear programming model and illustrate the benefits of the method by using a case study based on IEEE 33-bus distribution network. Simulation results show that the proposed method introduces more robustness and economic benefits to MEMG.","PeriodicalId":257974,"journal":{"name":"2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Stage Stochastic Operation Approach of Combined Heat and Power Networks\",\"authors\":\"Yumin Chen, Yan Xu, Zhengmao Li, X. Feng, Hongming Yang, L. C. Pereira da Silva, Ashu Verma\",\"doi\":\"10.1109/ISGT-Asia.2019.8881188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a multi-energy microgrid (MEMG), various energies like heat and electricity are integrated at the system level to increase the overall energy utilization efficiency. Nevertheless, the intermittency and randomness of renewable energy resources pose significant challenges to the operation of microgrids, especially for MEMGs. To overcome the difficulties, we present a two-stage stochastic operation method to optimally schedule the units in MEMG under varied uncertainties from renewable energy resources, electricity price and loads. In the proposed method, the energy storage tanks and on/off statuses of generators are dispatched in advance; in the second stage, the output power of generation units and auxiliary units will be optimized to act as a supplement. We formulate the problem as a two-stage mixed-integer linear programming model and illustrate the benefits of the method by using a case study based on IEEE 33-bus distribution network. Simulation results show that the proposed method introduces more robustness and economic benefits to MEMG.\",\"PeriodicalId\":257974,\"journal\":{\"name\":\"2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT-Asia.2019.8881188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-Asia.2019.8881188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Two-Stage Stochastic Operation Approach of Combined Heat and Power Networks
In a multi-energy microgrid (MEMG), various energies like heat and electricity are integrated at the system level to increase the overall energy utilization efficiency. Nevertheless, the intermittency and randomness of renewable energy resources pose significant challenges to the operation of microgrids, especially for MEMGs. To overcome the difficulties, we present a two-stage stochastic operation method to optimally schedule the units in MEMG under varied uncertainties from renewable energy resources, electricity price and loads. In the proposed method, the energy storage tanks and on/off statuses of generators are dispatched in advance; in the second stage, the output power of generation units and auxiliary units will be optimized to act as a supplement. We formulate the problem as a two-stage mixed-integer linear programming model and illustrate the benefits of the method by using a case study based on IEEE 33-bus distribution network. Simulation results show that the proposed method introduces more robustness and economic benefits to MEMG.