在构造bvh、八叉树和k-d树时最大化并行性

Tero Karras
{"title":"在构造bvh、八叉树和k-d树时最大化并行性","authors":"Tero Karras","doi":"10.2312/EGGH/HPG12/033-037","DOIUrl":null,"url":null,"abstract":"A number of methods for constructing bounding volume hierarchies and point-based octrees on the GPU are based on the idea of ordering primitives along a space-filling curve. A major shortcoming with these methods is that they construct levels of the tree sequentially, which limits the amount of parallelism that they can achieve. We present a novel approach that improves scalability by constructing the entire tree in parallel. Our main contribution is an in-place algorithm for constructing binary radix trees, which we use as a building block for other types of trees.","PeriodicalId":294868,"journal":{"name":"EGGH-HPG'12","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"205","resultStr":"{\"title\":\"Maximizing parallelism in the construction of BVHs, octrees, and k-d trees\",\"authors\":\"Tero Karras\",\"doi\":\"10.2312/EGGH/HPG12/033-037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of methods for constructing bounding volume hierarchies and point-based octrees on the GPU are based on the idea of ordering primitives along a space-filling curve. A major shortcoming with these methods is that they construct levels of the tree sequentially, which limits the amount of parallelism that they can achieve. We present a novel approach that improves scalability by constructing the entire tree in parallel. Our main contribution is an in-place algorithm for constructing binary radix trees, which we use as a building block for other types of trees.\",\"PeriodicalId\":294868,\"journal\":{\"name\":\"EGGH-HPG'12\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"205\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EGGH-HPG'12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/EGGH/HPG12/033-037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EGGH-HPG'12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EGGH/HPG12/033-037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 205

摘要

在GPU上构造边界体层次结构和基于点的八叉树的许多方法都是基于沿着空间填充曲线排序原语的思想。这些方法的一个主要缺点是它们按顺序构建树的层次,这限制了它们可以实现的并行性。我们提出了一种新的方法,通过并行构建整个树来提高可伸缩性。我们的主要贡献是用于构造二叉基树的就地算法,我们将其用作其他类型树的构建块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximizing parallelism in the construction of BVHs, octrees, and k-d trees
A number of methods for constructing bounding volume hierarchies and point-based octrees on the GPU are based on the idea of ordering primitives along a space-filling curve. A major shortcoming with these methods is that they construct levels of the tree sequentially, which limits the amount of parallelism that they can achieve. We present a novel approach that improves scalability by constructing the entire tree in parallel. Our main contribution is an in-place algorithm for constructing binary radix trees, which we use as a building block for other types of trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信