代数电磁

Eike Scholz, S. Lange, T. Eibert
{"title":"代数电磁","authors":"Eike Scholz, S. Lange, T. Eibert","doi":"10.1109/ursi-emts.2016.7571435","DOIUrl":null,"url":null,"abstract":"This paper introduces the concept of Algebraic Electromagnetism to solve the problem of finding stable spatial discretizations of the electromagnetic field for large scale, ultra-wide-band electromagnetic systems, composed of possibly nonlinear subsystems with memory and/or hysteresis effects. It is a thorough approach to exact discrete electromagnetism, given by an algebraic construction of general material operators that have the property that solving Maxwell's equations with these is exactly equivalent to solving a corresponding system of ordinary differential equations.","PeriodicalId":400853,"journal":{"name":"2016 URSI International Symposium on Electromagnetic Theory (EMTS)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic Electromagnetism\",\"authors\":\"Eike Scholz, S. Lange, T. Eibert\",\"doi\":\"10.1109/ursi-emts.2016.7571435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the concept of Algebraic Electromagnetism to solve the problem of finding stable spatial discretizations of the electromagnetic field for large scale, ultra-wide-band electromagnetic systems, composed of possibly nonlinear subsystems with memory and/or hysteresis effects. It is a thorough approach to exact discrete electromagnetism, given by an algebraic construction of general material operators that have the property that solving Maxwell's equations with these is exactly equivalent to solving a corresponding system of ordinary differential equations.\",\"PeriodicalId\":400853,\"journal\":{\"name\":\"2016 URSI International Symposium on Electromagnetic Theory (EMTS)\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 URSI International Symposium on Electromagnetic Theory (EMTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ursi-emts.2016.7571435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 URSI International Symposium on Electromagnetic Theory (EMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ursi-emts.2016.7571435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入代数电磁学的概念,以解决由可能具有记忆和/或滞后效应的非线性子系统组成的大规模超宽带电磁系统的稳定空间离散化问题。它是精确离散电磁学的一种彻底方法,由一般材料算符的代数构造给出,这些算符具有用这些算符求解麦克斯韦方程组完全等价于求解相应的常微分方程组的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic Electromagnetism
This paper introduces the concept of Algebraic Electromagnetism to solve the problem of finding stable spatial discretizations of the electromagnetic field for large scale, ultra-wide-band electromagnetic systems, composed of possibly nonlinear subsystems with memory and/or hysteresis effects. It is a thorough approach to exact discrete electromagnetism, given by an algebraic construction of general material operators that have the property that solving Maxwell's equations with these is exactly equivalent to solving a corresponding system of ordinary differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信