降维对离群值检测的影响:一个实证研究

Vivek Vaidya, Jaideep Vaidya
{"title":"降维对离群值检测的影响:一个实证研究","authors":"Vivek Vaidya, Jaideep Vaidya","doi":"10.1109/TPS-ISA56441.2022.00028","DOIUrl":null,"url":null,"abstract":"Outlier detection is a fundamental data analytics technique often used for many security applications. Numerous outlier detection techniques exist, and in most cases are used to directly identify outliers without any interaction. Typically the underlying data used is often high dimensional and complex. Even though outliers may be identified, since humans can easily grasp low dimensional spaces, it is difficult for a security expert to understand/visualize why a particular event or record has been identified as an outlier. In this paper we study the extent to which outlier detection techniques work in smaller dimensions and how well dimensional reduction techniques still enable accurate detection of outliers. This can help us to understand the extent to which data can be visualized while still retaining the intrinsic outlyingness of the outliers.","PeriodicalId":427887,"journal":{"name":"2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Dimensionality Reduction on Outlier Detection: an Empirical Study\",\"authors\":\"Vivek Vaidya, Jaideep Vaidya\",\"doi\":\"10.1109/TPS-ISA56441.2022.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlier detection is a fundamental data analytics technique often used for many security applications. Numerous outlier detection techniques exist, and in most cases are used to directly identify outliers without any interaction. Typically the underlying data used is often high dimensional and complex. Even though outliers may be identified, since humans can easily grasp low dimensional spaces, it is difficult for a security expert to understand/visualize why a particular event or record has been identified as an outlier. In this paper we study the extent to which outlier detection techniques work in smaller dimensions and how well dimensional reduction techniques still enable accurate detection of outliers. This can help us to understand the extent to which data can be visualized while still retaining the intrinsic outlyingness of the outliers.\",\"PeriodicalId\":427887,\"journal\":{\"name\":\"2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPS-ISA56441.2022.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPS-ISA56441.2022.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异常值检测是一种基本的数据分析技术,经常用于许多安全应用程序。存在许多异常点检测技术,在大多数情况下,直接识别异常点而不需要任何交互。通常使用的底层数据通常是高维的和复杂的。尽管可以识别异常值,但由于人类可以很容易地掌握低维空间,因此安全专家很难理解/可视化为什么特定事件或记录被识别为异常值。在本文中,我们研究了离群点检测技术在较小维度上的工作程度,以及降维技术仍然能够准确检测离群点的程度。这可以帮助我们理解数据可视化的程度,同时仍然保留离群值的内在离群性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Dimensionality Reduction on Outlier Detection: an Empirical Study
Outlier detection is a fundamental data analytics technique often used for many security applications. Numerous outlier detection techniques exist, and in most cases are used to directly identify outliers without any interaction. Typically the underlying data used is often high dimensional and complex. Even though outliers may be identified, since humans can easily grasp low dimensional spaces, it is difficult for a security expert to understand/visualize why a particular event or record has been identified as an outlier. In this paper we study the extent to which outlier detection techniques work in smaller dimensions and how well dimensional reduction techniques still enable accurate detection of outliers. This can help us to understand the extent to which data can be visualized while still retaining the intrinsic outlyingness of the outliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信