多云中的数据隐私:一个增强的数据碎片框架

Randolph Loh, V. Thing
{"title":"多云中的数据隐私:一个增强的数据碎片框架","authors":"Randolph Loh, V. Thing","doi":"10.1109/PST52912.2021.9647746","DOIUrl":null,"url":null,"abstract":"Data splitting preserves privacy by partitioning data into various fragments to be stored remotely and shared. It supports most data operations because data can be stored in clear as opposed to methods that rely on cryptography. However, majority of existing data splitting techniques do not consider data already in the multi-cloud. This leads to unnecessary use of resources to re-split data into fragments. This work proposes a data splitting framework that leverages on existing data in the multi-cloud. It improves data splitting mechanisms by reducing the number of splitting operations and resulting fragments. Therefore, decreasing the number of storage locations a data owner manages. Broadcasts queries locate third-party data fragments to avoid costly operations when splitting data. This work examines considerations for the use of third-party fragments and application to existing data splitting techniques. The proposed framework was also applied to an existing data splitting mechanism to complement its capabilities.","PeriodicalId":144610,"journal":{"name":"2021 18th International Conference on Privacy, Security and Trust (PST)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Privacy in Multi-Cloud: An Enhanced Data Fragmentation Framework\",\"authors\":\"Randolph Loh, V. Thing\",\"doi\":\"10.1109/PST52912.2021.9647746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data splitting preserves privacy by partitioning data into various fragments to be stored remotely and shared. It supports most data operations because data can be stored in clear as opposed to methods that rely on cryptography. However, majority of existing data splitting techniques do not consider data already in the multi-cloud. This leads to unnecessary use of resources to re-split data into fragments. This work proposes a data splitting framework that leverages on existing data in the multi-cloud. It improves data splitting mechanisms by reducing the number of splitting operations and resulting fragments. Therefore, decreasing the number of storage locations a data owner manages. Broadcasts queries locate third-party data fragments to avoid costly operations when splitting data. This work examines considerations for the use of third-party fragments and application to existing data splitting techniques. The proposed framework was also applied to an existing data splitting mechanism to complement its capabilities.\",\"PeriodicalId\":144610,\"journal\":{\"name\":\"2021 18th International Conference on Privacy, Security and Trust (PST)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 18th International Conference on Privacy, Security and Trust (PST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PST52912.2021.9647746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th International Conference on Privacy, Security and Trust (PST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PST52912.2021.9647746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据分割通过将数据分割成不同的片段来远程存储和共享,从而保护隐私。它支持大多数数据操作,因为与依赖加密的方法相反,数据可以以明文方式存储。然而,大多数现有的数据分割技术并没有考虑到多云中的数据。这将导致不必要地使用资源将数据重新拆分为片段。这项工作提出了一个利用多云中现有数据的数据分割框架。它通过减少分割操作和产生的片段的数量来改进数据分割机制。因此,减少数据所有者管理的存储位置的数量。广播查询定位第三方数据片段,以避免拆分数据时的昂贵操作。这项工作考察了使用第三方片段和应用于现有数据分割技术的考虑。提出的框架还应用于现有的数据分割机制,以补充其功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Privacy in Multi-Cloud: An Enhanced Data Fragmentation Framework
Data splitting preserves privacy by partitioning data into various fragments to be stored remotely and shared. It supports most data operations because data can be stored in clear as opposed to methods that rely on cryptography. However, majority of existing data splitting techniques do not consider data already in the multi-cloud. This leads to unnecessary use of resources to re-split data into fragments. This work proposes a data splitting framework that leverages on existing data in the multi-cloud. It improves data splitting mechanisms by reducing the number of splitting operations and resulting fragments. Therefore, decreasing the number of storage locations a data owner manages. Broadcasts queries locate third-party data fragments to avoid costly operations when splitting data. This work examines considerations for the use of third-party fragments and application to existing data splitting techniques. The proposed framework was also applied to an existing data splitting mechanism to complement its capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信