{"title":"你也是,布鲁图斯!在社交媒体中诱捕可恶的用户:挑战,解决方案和见解","authors":"Mithun Das, Punyajoy Saha, Ritam Dutt, Pawan Goyal, Animesh Mukherjee, Binny Mathew","doi":"10.1145/3465336.3475106","DOIUrl":null,"url":null,"abstract":"Hate speech is regarded as one of the crucial issues plaguing the online social media. The current literature on hate speech detection leverages primarily the textual content to find hateful posts and subsequently identify hateful users. However, this methodology disregards the social connections between users. In this paper, we run a detailed exploration of the problem space and investigate an array of models ranging from purely textual to graph based to finally semi-supervised techniques using Graph Neural Networks (GNN) that utilize both textual and graph-based features. We run exhaustive experiments on two datasets -- Gab, which is loosely moderated and Twitter, which is strictly moderated. Overall the AGNN model achieves 0.791 macro F1-score on the Gab dataset and 0.780 macro F1-score on the Twitter dataset using only 5% of the labeled instances, considerably outperforming all the other models including the fully supervised ones. We perform detailed error analysis on the best performing text and graph based models and observe that hateful users have unique network neighborhood signatures and the AGNN model benefits by paying attention to these signatures. This property, as we observe, also allows the model to generalize well across platforms in a zero-shot setting. Lastly, we utilize the best performing GNN model to analyze the evolution of hateful users and their targets over time in Gab.","PeriodicalId":325072,"journal":{"name":"Proceedings of the 32nd ACM Conference on Hypertext and Social Media","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"You too Brutus! Trapping Hateful Users in Social Media: Challenges, Solutions & Insights\",\"authors\":\"Mithun Das, Punyajoy Saha, Ritam Dutt, Pawan Goyal, Animesh Mukherjee, Binny Mathew\",\"doi\":\"10.1145/3465336.3475106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hate speech is regarded as one of the crucial issues plaguing the online social media. The current literature on hate speech detection leverages primarily the textual content to find hateful posts and subsequently identify hateful users. However, this methodology disregards the social connections between users. In this paper, we run a detailed exploration of the problem space and investigate an array of models ranging from purely textual to graph based to finally semi-supervised techniques using Graph Neural Networks (GNN) that utilize both textual and graph-based features. We run exhaustive experiments on two datasets -- Gab, which is loosely moderated and Twitter, which is strictly moderated. Overall the AGNN model achieves 0.791 macro F1-score on the Gab dataset and 0.780 macro F1-score on the Twitter dataset using only 5% of the labeled instances, considerably outperforming all the other models including the fully supervised ones. We perform detailed error analysis on the best performing text and graph based models and observe that hateful users have unique network neighborhood signatures and the AGNN model benefits by paying attention to these signatures. This property, as we observe, also allows the model to generalize well across platforms in a zero-shot setting. Lastly, we utilize the best performing GNN model to analyze the evolution of hateful users and their targets over time in Gab.\",\"PeriodicalId\":325072,\"journal\":{\"name\":\"Proceedings of the 32nd ACM Conference on Hypertext and Social Media\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 32nd ACM Conference on Hypertext and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3465336.3475106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3465336.3475106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
You too Brutus! Trapping Hateful Users in Social Media: Challenges, Solutions & Insights
Hate speech is regarded as one of the crucial issues plaguing the online social media. The current literature on hate speech detection leverages primarily the textual content to find hateful posts and subsequently identify hateful users. However, this methodology disregards the social connections between users. In this paper, we run a detailed exploration of the problem space and investigate an array of models ranging from purely textual to graph based to finally semi-supervised techniques using Graph Neural Networks (GNN) that utilize both textual and graph-based features. We run exhaustive experiments on two datasets -- Gab, which is loosely moderated and Twitter, which is strictly moderated. Overall the AGNN model achieves 0.791 macro F1-score on the Gab dataset and 0.780 macro F1-score on the Twitter dataset using only 5% of the labeled instances, considerably outperforming all the other models including the fully supervised ones. We perform detailed error analysis on the best performing text and graph based models and observe that hateful users have unique network neighborhood signatures and the AGNN model benefits by paying attention to these signatures. This property, as we observe, also allows the model to generalize well across platforms in a zero-shot setting. Lastly, we utilize the best performing GNN model to analyze the evolution of hateful users and their targets over time in Gab.