重载蜂窝网络环境后向散射通信灵敏度分析

Ritayan Biswas, Jukka Lempiäinen
{"title":"重载蜂窝网络环境后向散射通信灵敏度分析","authors":"Ritayan Biswas, Jukka Lempiäinen","doi":"10.23919/WONS57325.2023.10062021","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to evaluate the impact of adjacent cell interference on monostatic ambient backscattering communication (AmBC) systems at LTE and 5G frequencies. In dense urban areas, cellular macro cell and small cell networks are utilised to provide coverage to backscatter devices (BDs) and traditional users. However, due to the close proximity of adjacent cell mobile base stations, a significant amount of interference is noticed in the serving cell during peak hours. Thus, the signal-to-interference ratio (SIR) is much more of a limiting factor than the signal-to-noise ratio (SNR) of the system. Therefore, the SIR needs to be considered in the system design of AmBC systems. AmBC systems utilise ambient signals as the only source of power, so, there is a necessity for good SIR for proper communication with the BD. Therefore, based on the simulations, the area in close proximity to the base station can be utilised for the deployment of the BDs. Furthermore, it is observed that the achievable range of communication reduces by 44 percent in a heavily loaded cell in comparison with an empty cell when the SIR increases by 10 dB.","PeriodicalId":380263,"journal":{"name":"2023 18th Wireless On-Demand Network Systems and Services Conference (WONS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity Analysis of Ambient Backscattering Communications in Heavily Loaded Cellular Networks\",\"authors\":\"Ritayan Biswas, Jukka Lempiäinen\",\"doi\":\"10.23919/WONS57325.2023.10062021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to evaluate the impact of adjacent cell interference on monostatic ambient backscattering communication (AmBC) systems at LTE and 5G frequencies. In dense urban areas, cellular macro cell and small cell networks are utilised to provide coverage to backscatter devices (BDs) and traditional users. However, due to the close proximity of adjacent cell mobile base stations, a significant amount of interference is noticed in the serving cell during peak hours. Thus, the signal-to-interference ratio (SIR) is much more of a limiting factor than the signal-to-noise ratio (SNR) of the system. Therefore, the SIR needs to be considered in the system design of AmBC systems. AmBC systems utilise ambient signals as the only source of power, so, there is a necessity for good SIR for proper communication with the BD. Therefore, based on the simulations, the area in close proximity to the base station can be utilised for the deployment of the BDs. Furthermore, it is observed that the achievable range of communication reduces by 44 percent in a heavily loaded cell in comparison with an empty cell when the SIR increases by 10 dB.\",\"PeriodicalId\":380263,\"journal\":{\"name\":\"2023 18th Wireless On-Demand Network Systems and Services Conference (WONS)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th Wireless On-Demand Network Systems and Services Conference (WONS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WONS57325.2023.10062021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th Wireless On-Demand Network Systems and Services Conference (WONS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WONS57325.2023.10062021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是评估相邻蜂窝干扰对LTE和5G频率下单稳态环境后向散射通信(AmBC)系统的影响。在人口密集的城市地区,利用蜂窝宏蜂窝和小蜂窝网络向反向散射设备和传统用户提供覆盖。然而,由于相邻蜂窝移动基站的距离很近,在高峰时段服务小区中会注意到大量的干扰。因此,与系统的信噪比(SNR)相比,信干扰比(SIR)更像是一个限制因素。因此,在AmBC系统的系统设计中需要考虑SIR。AmBC系统利用环境信号作为唯一的动力来源,因此,为了与BD进行适当的通信,需要良好的SIR。因此,根据模拟,靠近基站的区域可以用于部署BD。此外,可以观察到,当SIR增加10 dB时,与空单元相比,在高负载单元中可实现的通信范围减少了44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity Analysis of Ambient Backscattering Communications in Heavily Loaded Cellular Networks
The purpose of this article is to evaluate the impact of adjacent cell interference on monostatic ambient backscattering communication (AmBC) systems at LTE and 5G frequencies. In dense urban areas, cellular macro cell and small cell networks are utilised to provide coverage to backscatter devices (BDs) and traditional users. However, due to the close proximity of adjacent cell mobile base stations, a significant amount of interference is noticed in the serving cell during peak hours. Thus, the signal-to-interference ratio (SIR) is much more of a limiting factor than the signal-to-noise ratio (SNR) of the system. Therefore, the SIR needs to be considered in the system design of AmBC systems. AmBC systems utilise ambient signals as the only source of power, so, there is a necessity for good SIR for proper communication with the BD. Therefore, based on the simulations, the area in close proximity to the base station can be utilised for the deployment of the BDs. Furthermore, it is observed that the achievable range of communication reduces by 44 percent in a heavily loaded cell in comparison with an empty cell when the SIR increases by 10 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信