混合Bing-Whitehead分解

Daniel Kasprowski, Min Hoon Kim
{"title":"混合Bing-Whitehead分解","authors":"Daniel Kasprowski, Min Hoon Kim","doi":"10.1093/oso/9780198841319.003.0008","DOIUrl":null,"url":null,"abstract":"Mixed Bing–Whitehead decompositions are a special class of toroidal decompositions of the 3-sphere, defined as the intersection of infinite nested sequences of solid tori. The Bing decomposition and the Whitehead decomposition from previous chapters are both examples of mixed Bing–Whitehead decompositions. In this chapter a precise criterion for when toroidal decompositions shrink is given, in terms of a ‘disc replicating function’. In the case of mixed Bing–Whitehead decomposition, this measures the relative numbers of Bing and Whitehead doubling in the sequence of solid tori in the definition. Mixed Bing–Whitehead decompositions are related to the boundaries of skyscrapers, and the shrinking theorem proved in this chapter will be key to the eventual proof of the disc embedding theorem.","PeriodicalId":272723,"journal":{"name":"The Disc Embedding Theorem","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed Bing–Whitehead Decompositions\",\"authors\":\"Daniel Kasprowski, Min Hoon Kim\",\"doi\":\"10.1093/oso/9780198841319.003.0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixed Bing–Whitehead decompositions are a special class of toroidal decompositions of the 3-sphere, defined as the intersection of infinite nested sequences of solid tori. The Bing decomposition and the Whitehead decomposition from previous chapters are both examples of mixed Bing–Whitehead decompositions. In this chapter a precise criterion for when toroidal decompositions shrink is given, in terms of a ‘disc replicating function’. In the case of mixed Bing–Whitehead decomposition, this measures the relative numbers of Bing and Whitehead doubling in the sequence of solid tori in the definition. Mixed Bing–Whitehead decompositions are related to the boundaries of skyscrapers, and the shrinking theorem proved in this chapter will be key to the eventual proof of the disc embedding theorem.\",\"PeriodicalId\":272723,\"journal\":{\"name\":\"The Disc Embedding Theorem\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Disc Embedding Theorem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198841319.003.0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Disc Embedding Theorem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198841319.003.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

混合Bing-Whitehead分解是一类特殊的3球环面分解,定义为无限嵌套的实体环面序列的交。前面章节中的Bing分解和Whitehead分解都是混合Bing - Whitehead分解的例子。在本章中,给出了圆环分解收缩的精确判据,即“圆盘复制函数”。在混合Bing - Whitehead分解的情况下,这测量了定义中固体环面序列中Bing和Whitehead加倍的相对数量。混合Bing-Whitehead分解与摩天大楼的边界有关,本章证明的收缩定理将是最终证明圆盘嵌入定理的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed Bing–Whitehead Decompositions
Mixed Bing–Whitehead decompositions are a special class of toroidal decompositions of the 3-sphere, defined as the intersection of infinite nested sequences of solid tori. The Bing decomposition and the Whitehead decomposition from previous chapters are both examples of mixed Bing–Whitehead decompositions. In this chapter a precise criterion for when toroidal decompositions shrink is given, in terms of a ‘disc replicating function’. In the case of mixed Bing–Whitehead decomposition, this measures the relative numbers of Bing and Whitehead doubling in the sequence of solid tori in the definition. Mixed Bing–Whitehead decompositions are related to the boundaries of skyscrapers, and the shrinking theorem proved in this chapter will be key to the eventual proof of the disc embedding theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信