利用信道注意和熵最小化改进自编码器新颖性检测

Dongyan Guo, Miao Tian, Ying Cui, Xiang Pan, Shengyong Chen
{"title":"利用信道注意和熵最小化改进自编码器新颖性检测","authors":"Dongyan Guo, Miao Tian, Ying Cui, Xiang Pan, Shengyong Chen","doi":"10.1145/3444685.3446311","DOIUrl":null,"url":null,"abstract":"Novelty detection is a important research area which mainly solves the classification problem of inliers which usually consists of normal samples and outliers composed of abnormal samples. Auto-encoder is often used for novelty detection. However, the generalization ability of the auto-encoder may cause the undesirable reconstruction of abnormal elements and reduce the identification ability of the model. To solve the problem, we focus on the perspective of better reconstructing the normal samples as well as retaining the unique information of normal samples to improve the performance of auto-encoder for novelty detection. Firstly, we introduce attention mechanism into the task. Under the action of attention mechanism, auto-encoder can pay more attention to the representation of inlier samples through adversarial training. Secondly, we apply the information entropy into the latent layer to make it sparse and constrain the expression of diversity. Experimental results on three public datasets show that the proposed method achieves comparable performance compared with previous popular approaches.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving auto-encoder novelty detection using channel attention and entropy minimization\",\"authors\":\"Dongyan Guo, Miao Tian, Ying Cui, Xiang Pan, Shengyong Chen\",\"doi\":\"10.1145/3444685.3446311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novelty detection is a important research area which mainly solves the classification problem of inliers which usually consists of normal samples and outliers composed of abnormal samples. Auto-encoder is often used for novelty detection. However, the generalization ability of the auto-encoder may cause the undesirable reconstruction of abnormal elements and reduce the identification ability of the model. To solve the problem, we focus on the perspective of better reconstructing the normal samples as well as retaining the unique information of normal samples to improve the performance of auto-encoder for novelty detection. Firstly, we introduce attention mechanism into the task. Under the action of attention mechanism, auto-encoder can pay more attention to the representation of inlier samples through adversarial training. Secondly, we apply the information entropy into the latent layer to make it sparse and constrain the expression of diversity. Experimental results on three public datasets show that the proposed method achieves comparable performance compared with previous popular approaches.\",\"PeriodicalId\":119278,\"journal\":{\"name\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3444685.3446311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

新颖性检测是一个重要的研究领域,主要解决通常由正常样本组成的内线和由异常样本组成的离群的分类问题。自动编码器常用于新颖性检测。然而,自编码器的泛化能力可能会导致异常元素的不良重构,降低模型的识别能力。为了解决这一问题,我们从更好地重建正态样本和保留正态样本的唯一信息的角度来提高自编码器的新颖性检测性能。首先,我们将注意机制引入到任务中。在注意机制的作用下,自编码器可以通过对抗性训练将更多的注意力放在对早期样本的表示上。其次,将信息熵应用到隐层中,使其稀疏化,并对多样性的表达进行约束;在三个公开数据集上的实验结果表明,该方法与之前流行的方法相比具有相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving auto-encoder novelty detection using channel attention and entropy minimization
Novelty detection is a important research area which mainly solves the classification problem of inliers which usually consists of normal samples and outliers composed of abnormal samples. Auto-encoder is often used for novelty detection. However, the generalization ability of the auto-encoder may cause the undesirable reconstruction of abnormal elements and reduce the identification ability of the model. To solve the problem, we focus on the perspective of better reconstructing the normal samples as well as retaining the unique information of normal samples to improve the performance of auto-encoder for novelty detection. Firstly, we introduce attention mechanism into the task. Under the action of attention mechanism, auto-encoder can pay more attention to the representation of inlier samples through adversarial training. Secondly, we apply the information entropy into the latent layer to make it sparse and constrain the expression of diversity. Experimental results on three public datasets show that the proposed method achieves comparable performance compared with previous popular approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信