烟雾覆盖Sentinel-2数据烧伤面积制图方法评价

Alexandru-Cosmin Grivei, C. Vaduva, M. Datcu
{"title":"烟雾覆盖Sentinel-2数据烧伤面积制图方法评价","authors":"Alexandru-Cosmin Grivei, C. Vaduva, M. Datcu","doi":"10.1109/COMM48946.2020.9141999","DOIUrl":null,"url":null,"abstract":"Wildfires become more frequent in the context of global warming and severe drought in several parts of the globe. Earth observation data can be used to provide information in such cases, but sometimes, when using optical satellite imagery, the evaluation of the effects produced by ongoing large scale forest fires, can be impeded by smoke. It can reduce the accuracy of the information required by disaster management authorities when allocating resources. To improve both the usability of optical remote sensing data and the quality of the obtained information we compare multiple feature extraction, classification, and visual enhancement methods and algorithms for land cover mapping of smoke covered Sentinel-2 data. The demonstration is performed for the 2019 forest fires in Australia.","PeriodicalId":405841,"journal":{"name":"2020 13th International Conference on Communications (COMM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Assessment of Burned Area Mapping Methods for Smoke Covered Sentinel-2 Data\",\"authors\":\"Alexandru-Cosmin Grivei, C. Vaduva, M. Datcu\",\"doi\":\"10.1109/COMM48946.2020.9141999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wildfires become more frequent in the context of global warming and severe drought in several parts of the globe. Earth observation data can be used to provide information in such cases, but sometimes, when using optical satellite imagery, the evaluation of the effects produced by ongoing large scale forest fires, can be impeded by smoke. It can reduce the accuracy of the information required by disaster management authorities when allocating resources. To improve both the usability of optical remote sensing data and the quality of the obtained information we compare multiple feature extraction, classification, and visual enhancement methods and algorithms for land cover mapping of smoke covered Sentinel-2 data. The demonstration is performed for the 2019 forest fires in Australia.\",\"PeriodicalId\":405841,\"journal\":{\"name\":\"2020 13th International Conference on Communications (COMM)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 13th International Conference on Communications (COMM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMM48946.2020.9141999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Conference on Communications (COMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMM48946.2020.9141999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在全球变暖和全球一些地区严重干旱的背景下,野火变得更加频繁。在这种情况下,地球观测数据可用于提供信息,但有时,在使用光学卫星图像时,对正在发生的大规模森林火灾所产生影响的评价可能受到烟雾的阻碍。它会降低灾害管理当局在分配资源时所需信息的准确性。为了提高光学遥感数据的可用性和获得的信息质量,我们比较了多种特征提取、分类和视觉增强方法和算法,用于烟雾覆盖的Sentinel-2数据的土地覆盖制图。该演示是为2019年澳大利亚森林火灾进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Burned Area Mapping Methods for Smoke Covered Sentinel-2 Data
Wildfires become more frequent in the context of global warming and severe drought in several parts of the globe. Earth observation data can be used to provide information in such cases, but sometimes, when using optical satellite imagery, the evaluation of the effects produced by ongoing large scale forest fires, can be impeded by smoke. It can reduce the accuracy of the information required by disaster management authorities when allocating resources. To improve both the usability of optical remote sensing data and the quality of the obtained information we compare multiple feature extraction, classification, and visual enhancement methods and algorithms for land cover mapping of smoke covered Sentinel-2 data. The demonstration is performed for the 2019 forest fires in Australia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信