使用RGB数据的人体动作识别

Amel Ben Mahjoub, Mohamed Atri
{"title":"使用RGB数据的人体动作识别","authors":"Amel Ben Mahjoub, Mohamed Atri","doi":"10.1109/IDT.2016.7843019","DOIUrl":null,"url":null,"abstract":"Human action recognition is an important computer vision research area, which is helpful in umpteen applications. This paper presents our method to recognize human activities. We use the Spatio-Temporal Interest Point (STIP) for detection of the important change in the image. Then, we extract appearance and motion features of these interest points using the histogram of Oriented Gradient (HOG) and Histogram of Optical Flow (HOF) descriptors. Finally, we match the Support Vector Machine (SVM) by Bag Of Word (BOW) of the space-time interest point descriptor to give the label of each video sequence. We perform our approach to UTD-MHAD complex dataset and it provides a good action recognition rate. Our proposed algorithm perform better than other methods based on the same sequence data of the public UTD-MHAD database.","PeriodicalId":131600,"journal":{"name":"2016 11th International Design & Test Symposium (IDT)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Human action recognition using RGB data\",\"authors\":\"Amel Ben Mahjoub, Mohamed Atri\",\"doi\":\"10.1109/IDT.2016.7843019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human action recognition is an important computer vision research area, which is helpful in umpteen applications. This paper presents our method to recognize human activities. We use the Spatio-Temporal Interest Point (STIP) for detection of the important change in the image. Then, we extract appearance and motion features of these interest points using the histogram of Oriented Gradient (HOG) and Histogram of Optical Flow (HOF) descriptors. Finally, we match the Support Vector Machine (SVM) by Bag Of Word (BOW) of the space-time interest point descriptor to give the label of each video sequence. We perform our approach to UTD-MHAD complex dataset and it provides a good action recognition rate. Our proposed algorithm perform better than other methods based on the same sequence data of the public UTD-MHAD database.\",\"PeriodicalId\":131600,\"journal\":{\"name\":\"2016 11th International Design & Test Symposium (IDT)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 11th International Design & Test Symposium (IDT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDT.2016.7843019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Design & Test Symposium (IDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2016.7843019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

人体动作识别是计算机视觉的一个重要研究领域,具有广泛的应用前景。本文提出了一种识别人类活动的方法。我们使用时空兴趣点(STIP)来检测图像中的重要变化。然后,我们使用定向梯度直方图和光流直方图描述符提取这些兴趣点的外观和运动特征。最后,利用时空兴趣点描述符的词袋(BOW)对支持向量机(SVM)进行匹配,给出每个视频序列的标签。将该方法应用于UTD-MHAD复杂数据集,取得了较好的动作识别率。本文提出的算法比基于公共UTD-MHAD数据库相同序列数据的其他方法性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human action recognition using RGB data
Human action recognition is an important computer vision research area, which is helpful in umpteen applications. This paper presents our method to recognize human activities. We use the Spatio-Temporal Interest Point (STIP) for detection of the important change in the image. Then, we extract appearance and motion features of these interest points using the histogram of Oriented Gradient (HOG) and Histogram of Optical Flow (HOF) descriptors. Finally, we match the Support Vector Machine (SVM) by Bag Of Word (BOW) of the space-time interest point descriptor to give the label of each video sequence. We perform our approach to UTD-MHAD complex dataset and it provides a good action recognition rate. Our proposed algorithm perform better than other methods based on the same sequence data of the public UTD-MHAD database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信