用多分辨率多小波基函数求解波动方程

H. Sekino, Takumi Okamoto, S. Hamada
{"title":"用多分辨率多小波基函数求解波动方程","authors":"H. Sekino, Takumi Okamoto, S. Hamada","doi":"10.1109/ICWAPR.2010.5576390","DOIUrl":null,"url":null,"abstract":"Classical wave-equation is solved using Multiresolution Multiwavelet (MW) basis functions in one- and two-dimensional space. The time progression operator is represented using Cayley formalism in order to avoid instability of the solution. Stable solutions are obtained for different initial conditions.","PeriodicalId":219884,"journal":{"name":"2010 International Conference on Wavelet Analysis and Pattern Recognition","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Solution of wave-equation using multiresolution multiwavelet basis function\",\"authors\":\"H. Sekino, Takumi Okamoto, S. Hamada\",\"doi\":\"10.1109/ICWAPR.2010.5576390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical wave-equation is solved using Multiresolution Multiwavelet (MW) basis functions in one- and two-dimensional space. The time progression operator is represented using Cayley formalism in order to avoid instability of the solution. Stable solutions are obtained for different initial conditions.\",\"PeriodicalId\":219884,\"journal\":{\"name\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2010.5576390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2010.5576390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用多分辨率多小波基函数在一维和二维空间中求解经典波动方程。为了避免解的不稳定性,时间级数算子采用Cayley形式表示。得到了不同初始条件下的稳定解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of wave-equation using multiresolution multiwavelet basis function
Classical wave-equation is solved using Multiresolution Multiwavelet (MW) basis functions in one- and two-dimensional space. The time progression operator is represented using Cayley formalism in order to avoid instability of the solution. Stable solutions are obtained for different initial conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信