Y. Chen, Z. Ye, C. Sun, S. Zhang, X. Hu, R. Ding, L. He
{"title":"低温下HgCdTe irfpa探测器的电感耦合等离子体刻蚀","authors":"Y. Chen, Z. Ye, C. Sun, S. Zhang, X. Hu, R. Ding, L. He","doi":"10.1117/12.2222825","DOIUrl":null,"url":null,"abstract":"To fabricate various advanced structures with HgCdTe material, the Inductively Coupled Plasma enhanced Reactive Ion Etching system is indispensable. However, due to low damage threshold and complicated behaviors of mercury in HgCdTe, the lattice damage and induced electrical conversion is very common. According to the diffusion model during etching period, the mercury interstitials, however, may not diffuse deep into the material at cryogenic temperature. In this report, ICP etching of HgCdTe at cryogenic temperature was implemented. The etching system with cryogenic assembly is provided by Oxford Instrument. The sample table was cooled down to 123K with liquid nitrogen. The mask of SiO2 with a contact layer of ZnS functioned well at this temperature. The selectivity and etching velocity maintained the same as reported in the etching of room temperature. Smooth and clean surfaces and profiles were achieved with an optimized recipe.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Inductively coupled plasma etching of HgCdTe IRFPAs detectors at cryogenic temperature\",\"authors\":\"Y. Chen, Z. Ye, C. Sun, S. Zhang, X. Hu, R. Ding, L. He\",\"doi\":\"10.1117/12.2222825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To fabricate various advanced structures with HgCdTe material, the Inductively Coupled Plasma enhanced Reactive Ion Etching system is indispensable. However, due to low damage threshold and complicated behaviors of mercury in HgCdTe, the lattice damage and induced electrical conversion is very common. According to the diffusion model during etching period, the mercury interstitials, however, may not diffuse deep into the material at cryogenic temperature. In this report, ICP etching of HgCdTe at cryogenic temperature was implemented. The etching system with cryogenic assembly is provided by Oxford Instrument. The sample table was cooled down to 123K with liquid nitrogen. The mask of SiO2 with a contact layer of ZnS functioned well at this temperature. The selectivity and etching velocity maintained the same as reported in the etching of room temperature. Smooth and clean surfaces and profiles were achieved with an optimized recipe.\",\"PeriodicalId\":222501,\"journal\":{\"name\":\"SPIE Defense + Security\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Defense + Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2222825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2222825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inductively coupled plasma etching of HgCdTe IRFPAs detectors at cryogenic temperature
To fabricate various advanced structures with HgCdTe material, the Inductively Coupled Plasma enhanced Reactive Ion Etching system is indispensable. However, due to low damage threshold and complicated behaviors of mercury in HgCdTe, the lattice damage and induced electrical conversion is very common. According to the diffusion model during etching period, the mercury interstitials, however, may not diffuse deep into the material at cryogenic temperature. In this report, ICP etching of HgCdTe at cryogenic temperature was implemented. The etching system with cryogenic assembly is provided by Oxford Instrument. The sample table was cooled down to 123K with liquid nitrogen. The mask of SiO2 with a contact layer of ZnS functioned well at this temperature. The selectivity and etching velocity maintained the same as reported in the etching of room temperature. Smooth and clean surfaces and profiles were achieved with an optimized recipe.