SI2M和AIOX实验室在WANLP 2022共享任务:阿拉伯语的宣传检测,数据增强和名称实体识别方法

Kamel Gaanoun, Imade Benelallam
{"title":"SI2M和AIOX实验室在WANLP 2022共享任务:阿拉伯语的宣传检测,数据增强和名称实体识别方法","authors":"Kamel Gaanoun, Imade Benelallam","doi":"10.18653/v1/2022.wanlp-1.58","DOIUrl":null,"url":null,"abstract":"This paper presents SI2M & AIOX Labs work among the propaganda detection in Arabic text shared task. The objective of this challenge is to identify the propaganda techniques used in specific propaganda fragments. We use a combination of data augmentation, Name Entity Recognition, rule-based repetition detection, and ARBERT prediction to develop our system. The model we provide scored 0.585 micro F1-Score and ranked 6th out of 12 teams.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SI2M & AIOX Labs at WANLP 2022 Shared Task: Propaganda Detection in Arabic, A Data Augmentation and Name Entity Recognition Approach\",\"authors\":\"Kamel Gaanoun, Imade Benelallam\",\"doi\":\"10.18653/v1/2022.wanlp-1.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents SI2M & AIOX Labs work among the propaganda detection in Arabic text shared task. The objective of this challenge is to identify the propaganda techniques used in specific propaganda fragments. We use a combination of data augmentation, Name Entity Recognition, rule-based repetition detection, and ARBERT prediction to develop our system. The model we provide scored 0.585 micro F1-Score and ranked 6th out of 12 teams.\",\"PeriodicalId\":355149,\"journal\":{\"name\":\"Workshop on Arabic Natural Language Processing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Arabic Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.wanlp-1.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wanlp-1.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了SI2M和AIOX实验室在阿拉伯语文本共享中的宣传检测工作。这项挑战的目的是确定在具体宣传片段中使用的宣传技术。我们结合了数据增强、名称实体识别、基于规则的重复检测和ARBERT预测来开发我们的系统。我们提供的模型得分为0.585 micro F1-Score,在12支队伍中排名第6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SI2M & AIOX Labs at WANLP 2022 Shared Task: Propaganda Detection in Arabic, A Data Augmentation and Name Entity Recognition Approach
This paper presents SI2M & AIOX Labs work among the propaganda detection in Arabic text shared task. The objective of this challenge is to identify the propaganda techniques used in specific propaganda fragments. We use a combination of data augmentation, Name Entity Recognition, rule-based repetition detection, and ARBERT prediction to develop our system. The model we provide scored 0.585 micro F1-Score and ranked 6th out of 12 teams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信